关键词
LSSVM与HMM在航空发动机状态预测中的应用研究
作者: 崔建国   高波   蒋丽英   于明月   郑蔚   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 隐马尔科夫模型   状态预测   航空发动机   最小二乘支持向量机   小波包分解   振动信号   降噪  
描述: 传统单一的状态预测方法难以精确预测航空发动机状态的缺陷,而最小二乘支持向量机(LSSVM)具有较强的非线性预测能力和泛化能力,可以有效地对信号进行非线性预测,隐马尔科夫模型(HMM)有利于处理连续
LSSVM与HMM在航空发动机状态预测中的应用研究
作者: 崔建国   高波   蒋丽英   于明月   郑蔚   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 隐马尔科夫模型   状态预测   航空发动机   最小二乘支持向量机   小波包分解   振动信号   降噪  
描述: 传统单一的状态预测方法难以精确预测航空发动机状态的缺陷,而最小二乘支持向量机(LSSVM)具有较强的非线性预测能力和泛化能力,可以有效地对信号进行非线性预测,隐马尔科夫模型(HMM)有利于处理连续
基于深度学习的航空传感器故障诊断方法
作者: 郑晓飞   郭创   姚斌   冯华鑫   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 信号重构   故障诊断   深度学习   航空传感器   深度置信网络   故障隔离  
描述: 为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出
基于深度学习的航空传感器故障诊断方法
作者: 郑晓飞   郭创   姚斌   冯华鑫   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 信号重构   故障诊断   深度学习   航空传感器   深度置信网络   故障隔离  
描述: 为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出
< 1
Rss订阅