首页>
根据【关键词:股票波动,主成分分析,短期交易,尺度加权方差法,EWMA控制图,正态变换】搜索到相关结果 2 条
-
基于随机森林的航空发动机工作状态识别
-
作者:
李鼎哲
彭靖波
赵泽平
王玮轩
赵彪
来源:
空军工程大学学报(自然科学版)
年份:
2021
文献类型 :
期刊
关键词:
工作状态识别
主成分分析
航空发动机
随机森林
属性约简
飞参数据
-
描述:
为解决人工识别航空发动机工作状态中存在的误判和耗时费力等问题,提高识别准确率,提出了一种基于主成分分析(PCA)的特征提取方法和随机森林(RF)的智能识别方法。首先对飞参数据进行预处理,利用PCA将数据降维进行属性约简,并根据发动机工作状态将样本分组,用随机森林方法训练获得分类器;然后将几种分类方法的识别效果进行对比;最后采用该方法对某一架次的发动机工作状态进行识别。结果表明,该方法能够准确快速地识别航空发动机的稳定工作状态,识别准确率达到97.89%。可应用于发动机工作状态的相关研究。
-
基于随机森林的航空发动机工作状态识别
-
作者:
李鼎哲
彭靖波
赵泽平
王玮轩
赵彪
来源:
空军工程大学学报(自然科学版)
年份:
2020
文献类型 :
期刊
关键词:
工作状态识别
主成分分析
航空发动机
随机森林
属性约简
飞参数据
-
描述:
为解决人工识别航空发动机工作状态中存在的误判和耗时费力等问题,提高识别准确率,提出了一种基于主成分分析(PCA)的特征提取方法和随机森林(RF)的智能识别方法。首先对飞参数据进行预处理,利用PCA将数据降维进行属性约简,并根据发动机工作状态将样本分组,用随机森林方法训练获得分类器;然后将几种分类方法的识别效果进行对比;最后采用该方法对某一架次的发动机工作状态进行识别。结果表明,该方法能够准确快速地识别航空发动机的稳定工作状态,识别准确率达到97.89%。可应用于发动机工作状态的相关研究。