关键词
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 和价值。当前针对航空发动机喘振故障诊断的模型存在诊断时间长、诊断准确率不高的特点。为了解决这些问题,在序列到序列(Seq2Seq)模型的基础上,使用卷积神经网络(CNN)代替Seq2Seq中编码器
基于CNN-Seq2Seq的航空发动机喘振诊断模型的研究
作者: 姚艳玲   袁化成   陆超   唐晓澜   黄爱华   来源: 测控技术 年份: 2022 文献类型 : 期刊 关键词: 序列到序列   卷积神经网络   故障诊断   发动机喘振  
描述: 和价值。当前针对航空发动机喘振故障诊断的模型存在诊断时间长、诊断准确率不高的特点。为了解决这些问题,在序列到序列(Seq2Seq)模型的基础上,使用卷积神经网络(CNN)代替Seq2Seq中编码器
基于深度学习的航空发动机齿轮故障诊断
作者: 万安平   杨洁   王景霖   陈挺   缪徐   黄佳湧   杜翔   来源: 振动.测试与诊断 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   卷积神经网络   多传感器信息融合   故障诊断   深度学习  
描述: 传统的机械故障诊断方法需要将采集的故障波信号进行信号处理,再结合神经网络进行特征提取与分类,不仅流程复杂、耗费时间,而且识别准确率不高。针对此问题,采用一维卷积神经网络(one
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
作者: 杨洁   万安平   王景霖   单添敏   缪徐   李客   左强   来源: 中国电机工程学报 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   卷积神经网络   多传感器信息融合   故障诊断   深度学习  
描述: 航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)对实验获取的某航空发动机的轴承故障
基于多传感器融合卷积神经网络的航空发动机轴承故障诊断
作者: 杨洁   万安平   王景霖   单添敏   缪徐   李客   左强   来源: 中国电机工程学报 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   卷积神经网络   多传感器信息融合   故障诊断   深度学习  
描述: 航空发动机轴承进行故障诊断。该模型采用一维卷积神经网络(one dimensional convolutional neural network,1D-CNN)对实验获取的某航空发动机的轴承故障
基于YOLOv4的航空发动机叶片凸台目标检测
作者: 陈为   钟欣童   张婧   李泽辰   来源: 计算机仿真 年份: 2022 文献类型 : 期刊 关键词: 数据增强   目标检测   叶片凸台检测   聚类分析  
描述: 的适应对凸台检测中小目标、结构复杂的特点,通过聚类分析的方法调整先验框尺寸,同时对原始数据集使用Mosaic方法进行数据增强。实验结果表明,改进后的YOLOv4模型在检测精度上提高了15.85%,召回率提高了21%,平均交并比可达0.75,检测性能优于在同一数据集中使用的SSD目标检测算法。
基于YOLOv5的航空发动机部件识别
作者: 敖良忠   朱俊名   王欣   来源: 信息技术与信息化 年份: 2022 文献类型 : 期刊 关键词: 航空发动机   YOLOv5s   增强现实   数据增强   实时识别  
描述: 为了实现快速且高精度的识别航空发动机部件,设计了一种采用YOLOv5算法的航空发动机部件识别方法。使用相机拍摄获取真实航空发动机上的部件原始图片,并使用LabelImg标注工具和数据增强方法自建
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
作者: 袁烨   黄虹   程骋   虞文武   丁汉   来源: 中国科学:技术科学 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   生成对抗网络   特征提取   航空航天   剩余寿命预测  
描述: 、时间跨度长等特点,针对其数据类型多且体量大、数据冗余度较高、剩余寿命预测精度较低等问题,本文通过将生成对抗网络(Generative adversarial network, GAN)的生成能力与门控循环
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
作者: 袁烨   黄虹   程骋   虞文武   丁汉   来源: 中国科学:技术科学 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   生成对抗网络   特征提取   航空航天   剩余寿命预测  
描述: 、时间跨度长等特点,针对其数据类型多且体量大、数据冗余度较高、剩余寿命预测精度较低等问题,本文通过将生成对抗网络(Generative adversarial network, GAN)的生成能力与门控循环
基于生成对抗网络的半航空瞬变电磁数据集扩充与全卷积网络降噪研究
作者: 王用鑫   来源: 山东大学 年份: 2022 文献类型 : 学位论文 关键词: 生成对抗网络   样本集扩充   深度学习   半航空瞬变电磁   数据降噪  
描述: 基于生成对抗网络的半航空瞬变电磁数据集扩充与全卷积网络降噪研究
< 1 2 ... 7 8 9
Rss订阅