首页>
根据【关键词:特征提取,滚动轴承,故障诊断,双向循环长短期记忆网络,神经网络】搜索到相关结果 4 条
-
多特征分类的PolSAR图像飞机目标检测
-
作者:
卢晓光
周波
韩萍
韩宾宾
来源:
信号处理
年份:
2019
文献类型 :
期刊
关键词:
特征提取
极化合成孔径雷达
飞机目标检测
SVM分类器
-
描述:
针对目前有关极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)的飞机目标检测算法虚警较多、自适应性较差的问题,给出一种复杂大场景中PolSAR图像多特征分类的飞机目标检测方法。该方法分为线下分类器训练和飞机目标检测两部分。使用Filter特征选择结合穷举法筛选出分类性能高的飞机极化特征训练SVM(Support Vector Machine, SVM)分类器;利用异化散射功率提取疑似飞机目标,进一步提取多个极化特征送入SVM分类获得检测结果。利用UAVSAR系统采集的多幅实测数据进行实验,并与现有的PolSAR图像飞机目标检测算法进行对比,结果表明该方法能够有效检测出飞机目标,并且虚警和漏警较少,方法自适应性有所提高。
-
多特征分类的PolSAR图像飞机目标检测
-
作者:
卢晓光
周波
韩萍
韩宾宾
来源:
信号处理
年份:
2019
文献类型 :
期刊
关键词:
特征提取
极化合成孔径雷达
飞机目标检测
SVM分类器
-
描述:
针对目前有关极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)的飞机目标检测算法虚警较多、自适应性较差的问题,给出一种复杂大场景中PolSAR图像多特征分类的飞机目标检测方法。该方法分为线下分类器训练和飞机目标检测两部分。使用Filter特征选择结合穷举法筛选出分类性能高的飞机极化特征训练SVM(Support Vector Machine, SVM)分类器;利用异化散射功率提取疑似飞机目标,进一步提取多个极化特征送入SVM分类获得检测结果。利用UAVSAR系统采集的多幅实测数据进行实验,并与现有的PolSAR图像飞机目标检测算法进行对比,结果表明该方法能够有效检测出飞机目标,并且虚警和漏警较少,方法自适应性有所提高。
-
多特征分类的PolSAR图像飞机目标检测
-
作者:
卢晓光
周波
韩萍
韩宾宾
来源:
信号处理
年份:
2019
文献类型 :
期刊
关键词:
特征提取
极化合成孔径雷达
飞机目标检测
SVM分类器
-
描述:
针对目前有关极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)的飞机目标检测算法虚警较多、自适应性较差的问题,给出一种复杂大场景中PolSAR图像多特征分类的飞机目标检测方法。该方法分为线下分类器训练和飞机目标检测两部分。使用Filter特征选择结合穷举法筛选出分类性能高的飞机极化特征训练SVM(Support Vector Machine, SVM)分类器;利用异化散射功率提取疑似飞机目标,进一步提取多个极化特征送入SVM分类获得检测结果。利用UAVSAR系统采集的多幅实测数据进行实验,并与现有的PolSAR图像飞机目标检测算法进行对比,结果表明该方法能够有效检测出飞机目标,并且虚警和漏警较少,方法自适应性有所提高。
-
多特征分类的PolSAR图像飞机目标检测
-
作者:
卢晓光
周波
韩萍
韩宾宾
来源:
信号处理
年份:
2019
文献类型 :
期刊
关键词:
特征提取
极化合成孔径雷达
飞机目标检测
SVM分类器
-
描述:
针对目前有关极化合成孔径雷达(Polarimetric Synthetic Aperture Radar, PolSAR)的飞机目标检测算法虚警较多、自适应性较差的问题,给出一种复杂大场景中PolSAR图像多特征分类的飞机目标检测方法。该方法分为线下分类器训练和飞机目标检测两部分。使用Filter特征选择结合穷举法筛选出分类性能高的飞机极化特征训练SVM(Support Vector Machine, SVM)分类器;利用异化散射功率提取疑似飞机目标,进一步提取多个极化特征送入SVM分类获得检测结果。利用UAVSAR系统采集的多幅实测数据进行实验,并与现有的PolSAR图像飞机目标检测算法进行对比,结果表明该方法能够有效检测出飞机目标,并且虚警和漏警较少,方法自适应性有所提高。