关键词
基于多结构卷积神经网络的高分遥感影像飞机目标检测
作者: 姚相坤   万里红   霍宏   方涛   来源: 计算机工程 年份: 2017 文献类型 : 期刊 关键词: 特征提取   卷积神经网络   多结构网络   目标检测   高分遥感影像  
描述: 传统的遥感影像目标检测方法大多利用人工提取特征,难以用于背景复杂的高分辨率遥感影像。针对该问题,构建一种多结构卷积神经网络模型(MSCNN)自动学习目标特征。通过改变卷积滤波器尺寸、数量以及网络层
基于多结构卷积神经网络的高分遥感影像飞机目标检测
作者: 姚相坤   万里红   霍宏   方涛   来源: 计算机工程 年份: 2017 文献类型 : 期刊 关键词: 特征提取   卷积神经网络   多结构网络   目标检测   高分遥感影像  
描述: 传统的遥感影像目标检测方法大多利用人工提取特征,难以用于背景复杂的高分辨率遥感影像。针对该问题,构建一种多结构卷积神经网络模型(MSCNN)自动学习目标特征。通过改变卷积滤波器尺寸、数量以及网络层
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果
基于深度神经网络的遥感图像飞机目标检测
作者: 李文斌   何冉   来源: 计算机工程 年份: 2021 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   目标检测   密度聚类   像素级标签  
描述: 模型与DBSCAN密度聚类算法相结合选取飞机目标的自适应候选区域,并基于VGG-16网络提取候选区域高层特征以获取飞机目标检测框,同时通过检测框抑制算法剔除重叠框和误检框,得到最终的飞机目标检测结果
基于FCN与CNN的遥感影像飞机目标检测方法
作者: 李文斌   何冉   来源: 计算机工程 年份: 2020 文献类型 : 期刊 关键词: FCN   遥感图像   CNN   目标检测   像素级标签  
描述: 特征提取及分类、检测框抑制等过程。通过密度聚类对FCN分割图聚类,获取每个目标物的自适应候选区域;使用VGG-16网络提取候选区域高层特征及结果,获取检测框;提出新的检测框抑制算法,对重叠、误检的检测框
基于FCN与CNN的遥感影像飞机目标检测方法
作者: 李文斌   何冉   来源: 计算机工程 年份: 2020 文献类型 : 期刊 关键词: FCN   遥感图像   CNN   目标检测   像素级标签  
描述: 特征提取及分类、检测框抑制等过程。通过密度聚类对FCN分割图聚类,获取每个目标物的自适应候选区域;使用VGG-16网络提取候选区域高层特征及结果,获取检测框;提出新的检测框抑制算法,对重叠、误检的检测框
基于深度学习的航空传感器故障诊断方法
作者: 郑晓飞   郭创   姚斌   冯华鑫   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 信号重构   故障诊断   深度学习   航空传感器   深度置信网络   故障隔离  
描述: 为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出深度置信网络隐层节点数选取的递推公式,构建深度置信网络状态观测器。离线训练时,利用飞行数据训练深度置信网络观测器。在线诊断时,通过比较观测器输出值与实际输出值判断故障类型,并给出3种故障隔离与信号重构方法。仿真结果表明,与BP神经网络观测器相比,该方法能够快速准确地进行故障诊断与隔离,并且完成信号重构。
基于深度学习的航空传感器故障诊断方法
作者: 郑晓飞   郭创   姚斌   冯华鑫   来源: 计算机工程 年份: 2018 文献类型 : 期刊 关键词: 信号重构   故障诊断   深度学习   航空传感器   深度置信网络   故障隔离  
描述: 为解决传统神经网络进行传感器故障诊断时存在的过拟合、泛化能力有限等问题,提出一种基于深度置信网络观测器的航空传感器故障诊断方法。利用深度置信网络替代浅层神经网络,在优化网络结构的基础上,给出深度置信网络隐层节点数选取的递推公式,构建深度置信网络状态观测器。离线训练时,利用飞行数据训练深度置信网络观测器。在线诊断时,通过比较观测器输出值与实际输出值判断故障类型,并给出3种故障隔离与信号重构方法。仿真结果表明,与BP神经网络观测器相比,该方法能够快速准确地进行故障诊断与隔离,并且完成信号重构。
< 1
Rss订阅