关键词
基于混合仿真的通用航空应急医疗转运实时任务评估
作者: 占艳丽   来源: 南京航空航天大学 年份: 2019 文献类型 : 学位论文 关键词: XGBoost   航空医疗转运   实时任务评估   多主体仿真   系统动力学  
描述: 基于混合仿真的通用航空应急医疗转运实时任务评估
基于北斗导航卫星的前向散射波飞行器探测方法研究
作者: 祝兴晟   来源: 哈尔滨工业大学 年份: 2019 文献类型 : 学位论文 关键词: 前向散射   机器学习   北斗导航卫星   双基地雷达  
描述: 基于北斗导航卫星的前向散射波飞行器探测方法研究
基于机器学习的航空收益管理需求预测算法的研究与实现
作者: 孙卫卫   来源: 山东大学 年份: 2019 文献类型 : 学位论文 关键词: 增量模型   长短时记忆网络   机器学习   需求预测  
描述: 基于机器学习的航空收益管理需求预测算法的研究与实现
物料供给不确定环境下的飞机移动生产线动态调度方法
作者: 陆志强   胡鑫铭   朱宏伟   来源: 同济大学学报(自然科学版) 年份: 2019 文献类型 : 期刊 关键词: 动态调度   机器学习   飞机移动生产线   局部前瞻搜索   支持向量数据描述  
描述: 飞机装配所需的物料种类复杂且数量巨大,其准时供给往往存在较大的不确定性.为了有效解决物料供给不确定环境下的飞机移动生产线动态调度问题,将机器学习中的支持向量数据描述技术(SVDD)与传统的调度方法相结合,提出了基于SVDD的动态调度算法.通过软件CPLEX和元启发式算法求解不同物料供给延期情形下的调度模型,并将得到的优化结果作为样本对SVDD分类模型进行离线训练.在实时调度阶段,根据SVDD模型实现作业的提前、延期或准时执行的分类.基于该分类结果,利用局部前瞻搜索算法进一步对提前和延期作业的具体开始执行时间做出决策.数值实验结果证明了所提出的算法在响应速度和求解效果上均能满足实际飞机移动生产线动态调度的需求.
基于自编码器的飞机类型识别方法
作者: 张朝柱   黄妤宁   来源: 无线电工程 年份: 2019 文献类型 : 期刊 关键词: 机器学习   梅尔倒谱系数   自编码器   飞机类型识别   联合特征提取  
描述: 针对人工监听识别飞机类型难度大的问题,提出了根据不同飞机发动机产生的不同噪声,通过特征提取,进而分类识别出飞机类型的一种方法。在梅尔倒谱系数(MFCC)算法特征提取的基础上,对提取的24维特征向量通过自编码器进行分类,对分类的准确率进行了仿真。实验结果表明,每一类声信号准确率均高于85%,且平均识别准确率为95.98%。针对单类别实际飞机声信号的分类准确率较其他类别准确率差的问题,提出了通过小波包分解-MFCC联合特征提取对自编码器进行优化。实验结果表明,每一类声信号准确率均高于90%,且平均准确率为97.74%。
物料供给不确定环境下的飞机移动生产线动态调度方法
作者: 陆志强   胡鑫铭   朱宏伟   来源: 同济大学学报(自然科学版) 年份: 2019 文献类型 : 期刊 关键词: 动态调度   机器学习   飞机移动生产线   局部前瞻搜索   支持向量数据描述  
描述: 飞机装配所需的物料种类复杂且数量巨大,其准时供给往往存在较大的不确定性.为了有效解决物料供给不确定环境下的飞机移动生产线动态调度问题,将机器学习中的支持向量数据描述技术(SVDD)与传统的调度方法相结合,提出了基于SVDD的动态调度算法.通过软件CPLEX和元启发式算法求解不同物料供给延期情形下的调度模型,并将得到的优化结果作为样本对SVDD分类模型进行离线训练.在实时调度阶段,根据SVDD模型实现作业的提前、延期或准时执行的分类.基于该分类结果,利用局部前瞻搜索算法进一步对提前和延期作业的具体开始执行时间做出决策.数值实验结果证明了所提出的算法在响应速度和求解效果上均能满足实际飞机移动生产线动态调度的需求.
基于自编码器的飞机类型识别方法
作者: 张朝柱   黄妤宁   来源: 无线电工程 年份: 2019 文献类型 : 期刊 关键词: 机器学习   梅尔倒谱系数   自编码器   飞机类型识别   联合特征提取  
描述: 针对人工监听识别飞机类型难度大的问题,提出了根据不同飞机发动机产生的不同噪声,通过特征提取,进而分类识别出飞机类型的一种方法。在梅尔倒谱系数(MFCC)算法特征提取的基础上,对提取的24维特征向量通过自编码器进行分类,对分类的准确率进行了仿真。实验结果表明,每一类声信号准确率均高于85%,且平均识别准确率为95.98%。针对单类别实际飞机声信号的分类准确率较其他类别准确率差的问题,提出了通过小波包分解-MFCC联合特征提取对自编码器进行优化。实验结果表明,每一类声信号准确率均高于90%,且平均准确率为97.74%。
机器学习技术在民航安全管理中的应用探析
作者: 阙佳鸿   来源: 科技创新与应用 年份: 2019 文献类型 : 期刊 关键词: 机器学习   计算机视觉   机场管制   模式识别   民航安全  
描述: 文章介绍了机器学习的算法分类和应用场景,指出了我国民用航空安全系统的现状以及存在的问题。并且在此基础上探讨了机器学习的主要技术在民航安全系统中的应用。为民航安全系统信息化建设进程的进一步发展提供了包括使用模式识别实现机场管制、计算机视觉实现场面安全、气象数据预测、管制员疲劳监控和设备维修数据监测在内的诸多有价值的研究方向。
基于自编码器的飞机类型识别方法
作者: 张朝柱   黄妤宁   来源: 无线电工程 年份: 2019 文献类型 : 期刊 关键词: 机器学习   梅尔倒谱系数   自编码器   飞机类型识别   联合特征提取  
描述: 针对人工监听识别飞机类型难度大的问题,提出了根据不同飞机发动机产生的不同噪声,通过特征提取,进而分类识别出飞机类型的一种方法。在梅尔倒谱系数(MFCC)算法特征提取的基础上,对提取的24维特征向量通过自编码器进行分类,对分类的准确率进行了仿真。实验结果表明,每一类声信号准确率均高于85%且平均识别准确率为95.98%;针对单类别实际飞机声信号的分类准确率较其他类别准确率差的问题,提出了通过小波包分解-MFCC联合特征提取对自编码器进行优化。实验结果表明,每一类声信号准确率均高于90%且平均准确率为97.74%。
非合作通信环境下飞机声信号类型识别的方法研究
作者: 黄妤宁   来源: 哈尔滨工程大学 年份: 2019 文献类型 : 学位论文 关键词: 支持向量机   梅尔频率倒谱系数   机器学习   飞机类型识别   自编码器  
描述: 非合作通信环境下飞机声信号类型识别的方法研究
< 1 2 ... 16 17 18
Rss订阅