首页>
根据【关键词:卷积神经网络,YOLOv5,光学飞机目标检测,Ghostnet】搜索到相关结果 2 条
-
航空机载红外图像的车辆目标自主检测识别
-
作者:
杨雪
修吉宏
刘小嘉
罗宁
来源:
激光与红外
年份:
2023
文献类型 :
期刊
关键词:
注意力机制
RFBs
YOLOv5
目标检测
红外图像
BiFPN
-
描述:
红外光学成像载荷利用目标的热辐射强度特性成像,具有一定的揭伪能力,可规避可见光成像装备无法在夜间和恶劣气象条件下成像的限制,但红外图像对比度低、边缘不清晰,大大降低了成像目标识别的准确率。本文提出一种基于YOLOv5的红外车辆目标检测算法,在浅层特征层引入RFBs模块,以提高小目标的感受野及检测效果,在颈部网络(Neck)部分,使用BiFPN结构,实现对底层特征的再次利用,以融合更多的特征,并添加CBAM注意力机制以提升检测精度。实验结果表明:在DroneVehicle数据集上的检测效果要优于原始网络,精确率(Precision)提升2.8%,召回率(Recall)提升16%,平均精度(mAP)提升2.3%。结论:可有效应用于航空红外图像的车辆自主检测识别。
-
基于改进候选区域网络的红外飞机检测
-
作者:
姜晓伟
王春平
付强
来源:
激光与红外
年份:
2019
文献类型 :
期刊
关键词:
聚类
红外飞机
卷积神经网络
目标检测
-
描述:
为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means