首页>
根据【关键词:卷积神经网络,长短时记忆网络,深度收缩稀疏自编码络,疲劳状态识别,脑功率图谱】搜索到相关结果 25 条
-
基于特征优选的航空发动机剩余寿命预测
-
作者:
黄培炜
来源:
华东交通大学
年份:
2021
文献类型 :
学位论文
关键词:
特征优选
Ⅱ
长短时记忆网络
MOPSO
NSGA
剩余寿命预测
-
描述:
基于特征优选的航空发动机剩余寿命预测
-
基于小样本多背景下的飞机图像识别研究
-
作者:
兰天
李博
杨敬宝
来源:
电脑编程技巧与维护
年份:
2021
文献类型 :
期刊
关键词:
HoG特征
卷积神经网络
飞机图像识别
-
描述:
飞机图像识别一直是航空领域识别各类飞机进行有效支援或侦察的重要一环,目前飞机图像识别常受到飞机姿态不同、图像模糊、拍摄角度各异的影响。传统的图像识别方法对于飞机图像具有一定的局限性,易受到背景环境影响,当图像中含有其他显著性目标时易失效,若进行目标分割运算量巨大,在现代化防控体系中,需要既快又好的方法精准识别飞机的机型。随着深度学习的出现,众多模式识别领域中问题得到解决,但深度学习需要大量样本对网络进行微调、参数优化,而目前公开的飞机图像数据库十分有限,图像背景差异巨大,因此提出了一种基于小样本、多背景下使用卷积神经网络进行飞机图像识别的方法。
-
基于可变形卷积神经网络的遥感图像飞机目标检测
-
作者:
李明阳
胡显
雷宏
来源:
国外电子测量技术
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
遥感影像
可变形卷积
飞机检测
-
描述:
遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
-
基于可变形卷积神经网络的遥感图像飞机目标检测
-
作者:
李明阳
胡显
雷宏
来源:
国外电子测量技术
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
遥感影像
可变形卷积
飞机检测
-
描述:
遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
-
基于优化CNN的航空液压管路卡箍故障诊断
-
作者:
窦金鑫
薛政坤
于晓光
范玉鑫
刘忠鑫
杨同光
来源:
机床与液压
年份:
2021
文献类型 :
期刊
关键词:
液压管路卡箍
卷积神经网络
故障诊断
优化变分模态分解
-
描述:
针对航空发动机液压卡箍-管路系统具有高度复杂性,导致卡箍振动信号存在非线性、非平稳性,从而难以提取出卡箍故障状态有效信息的问题,提出一种基于优化变分模态分解(VMD)与卷积神经网络(CNN)的卡箍智能故障诊断方法。基于优化的VMD将液压管路系统-卡箍振动信号分解成一系列固有模态函数;将含有卡箍故障信号明显的IMF输入到卷积神经网络训练模型,采用CNN进行自主特征学习和模式识别。并将该方法应用于实例中,结果表明:该方法不仅能有效地对信号进行分解,同时对不同类型的卡箍故障可达到精准识别和故障诊断。
-
航空发动机叶片热障涂层寿命智能预测方法研究
-
作者:
樊珊珊
来源:
西安理工大学
年份:
2021
文献类型 :
学位论文
关键词:
特征提取
卷积神经网络
热振实验
热障涂层
-
描述:
航空发动机叶片热障涂层寿命智能预测方法研究
-
基于深度学习的离场航空器滑行时间预测(英文)
-
作者:
李楠
焦庆宇
朱新华
王少聪
来源:
Transactions of Nanjing University of Aeronautics and Astronautics
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
场面运行
滑行时间
深度学习
航空运输
-
描述:
随着航班数量的不断增加,机场协同决策系统(Airport collaborative decision-making,A-CDM)的使用也越来越广泛。滑行时间预测的准确性对A-CDM计算离场航空器起飞排序队列和给出准确的撤轮挡时间具有重要的作用。本文提出一种基于时间-空间-环境数据的深度学习模型(Spatio-temporal-environment deep learning model,STEDL)来提高滑行时间预测的准确性。该模型由时间-流量变量(机场实际容量,场面航空器数量,时间段)、空间变量(滑行距离)、外部环境变量(天气,流控信息,跑道运行模式,机型)3部分组成。使用STEDL模型对香港机场离场航空器滑行时间进行预测验证。实验结果显示,STEDL模型预测准确率为95.4%,预测精度明显优于其他机器学习算法。
-
基于深度神经网络的遥感图像飞机目标检测
-
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
-
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
-
基于深度神经网络的遥感图像飞机目标检测
-
作者:
李文斌
何冉
来源:
计算机工程
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
目标检测
密度聚类
像素级标签
-
描述:
。实验结果表明,DC-DNN模型对于遥感图像飞机目标检测的准确率、召回率和F1值分别为95.78%、98.98%和0.973 5,相比WS-DNN、R-FCN等模型具有更好的检测性能和泛化能力。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。