按文献类别分组
关键词
基于改进Faster R-CNN的SAR图像飞机检测算法
作者: 李广帅   苏娟   李义红   来源: 北京航空航天大学学报 年份: 2020 文献类型 : 期刊 关键词: R   CNN   上下文信息   Align   浅层特征增强   Faster   飞机检测   ROI  
描述: 在合成孔径雷达(Synthetic Aperture Radar,SAR)图像分析领域,飞机目标作为一种重要目标,对其的检测越来越受到重视。针对传统SAR图像飞机检测算法需要人工设计特征且鲁棒性较差的问题,提出一种基于改进Faster R-CNN的SAR图像飞机检测算法。本文制作了一个SAR图像飞机数据集SAD(SAR Aircraft Dataset),以Faster R-CNN为检测框架,利用改进k-means算法设计更合理的先验锚点框,以适应飞机目标的形状特点;借鉴inception模块思想,设计多路不同尺寸卷积核以扩展网络宽度,增强对浅层特征的表达;分析残差网络Layer5层的特征输出具有更大的感受野,对其上采样后进行特征融合以利用更多的上下文信息;同时引入Mask R-CNN算法中提出的RoI Align单元,消除特征图与原始图像的映射偏差。实验结果表明,相比原始的Faster R-CNN算法,本文提出的改进的Faster R-CNN检测算法在SAR图像飞机数据集上平均检测精度提高了7.4%,同时保持了较快的检测速度。
光学遥感图像中的飞机目标检测技术研究综述
作者: 祝文韬   谢宝蓉   王琰   沈霁   朱浩文   来源: 计算机科学 年份: 2021 文献类型 : 期刊 关键词: 机器学习   光学遥感图像   深度学习   飞机目标检测   模板匹配  
描述: 光学遥感图像中的飞机目标检测技术已被广泛应用于城市规划、航空交通以及军事侦察领域。目前尽管已有大量研究,但仍然存在很多问题亟待解决。文中回顾了该技术研究现状,并从遥感图像目标检测思路出发,将飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
光学遥感图像中的飞机目标检测技术研究综述
作者: 祝文韬   谢宝蓉   王琰   沈霁   朱浩文   来源: 计算机科学 年份: 2021 文献类型 : 期刊 关键词: 机器学习   光学遥感图像   深度学习   飞机目标检测   模板匹配  
描述: 光学遥感图像中的飞机目标检测技术已被广泛应用于城市规划、航空交通以及军事侦察领域。目前尽管已有大量研究,但仍然存在很多问题亟待解决。文中回顾了该技术研究现状,并从遥感图像目标检测思路出发,将飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
基于最优区域生成的深度多尺度融合遥感飞机检测方法
作者: 刘晨   郑恩让   张桐   来源: 科学技术与工程 年份: 2020 文献类型 : 期刊 关键词: 遥感图像   飞机检测   多尺度融合   锚框  
描述: 基于最优区域生成的深度多尺度融合遥感飞机检测方法
基于卷积神经网络的遥感图像飞机检测
作者: 张义德   胡长雨   胡春育   来源: 光电子技术 年份: 2017 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   微调   迁移学习   飞机检测  
描述: 提出一种CNN的遥感图像飞机检测的方法。首先获得预训练好的CNN,然后通过参数迁移获得五层卷积层模型参数,接着利用遥感图像对第五层卷积层进行微调获得一个特征提取器。将特征提取器用于提取遥感图像训练集的深度特征,训练可变形部件检测模型。实验表明,提出的方法大大提高了遥感图像飞机目标检测精度,准确率达96%以上。
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
作者: 王思雨   高鑫   孙皓   郑歆慰   孙显   来源: 雷达学报 年份: 2017 文献类型 : 期刊 关键词: 合成孔径雷达(SAR)   数据增强   视觉显著性   飞机检测   卷积神经网络(CNN)  
描述: 传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
作者: 王思雨   高鑫   孙皓   郑歆慰   孙显   来源: 雷达学报 年份: 2017 文献类型 : 期刊 关键词: 合成孔径雷达(SAR)   数据增强   视觉显著性   飞机检测   卷积神经网络(CNN)  
描述: 传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
作者: 王思雨   高鑫   孙皓   郑歆慰   孙显   来源: 雷达学报 年份: 2019 文献类型 : 期刊 关键词: 合成孔径雷达(SAR)   数据增强   视觉显著性   飞机检测   卷积神经网络(CNN)  
描述: 传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
< 1 2
Rss订阅