首页>
根据【关键词:QAR数据,稀疏自编码器,深度学习,ELM,ConvLstm】搜索到相关结果 88 条
-
基于深度学习的航空器场面轨迹预测
-
作者:
李雪
何元清
胡耀
来源:
现代计算机
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
深度学习
轨迹预测
-
描述:
轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理,设定网络模型参数,构建轨迹预测模型,提出了一种基于深度学习的航空器场面滑行轨迹预测方法。结合场面航空器运动状态的变化,改进长短期记忆网络的隐藏层结构,实现对航空器场面轨迹的中期预测。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
多头注意力驱动的航空高速轴承故障诊断方法
-
作者:
王兴
张晗
朱家正
林建波
杜朝辉
来源:
振动与冲击
年份:
2023
文献类型 :
期刊
关键词:
多头注意力
航空轴承
故障诊断
深度学习
-
描述:
航空发动机运行速度高、工况变化大、结构复杂且干扰噪声大,导致微弱故障特征往往存在于多子空间中,目前基于数据驱动的诊断模型尚不足以可靠捕捉不同子空间中丰富的特征信息。针对上述问题,提出一种基于信号特征的多头注意力诊断方法(multi-head attention diagnosis method, MADM),可实现高速非平稳工况下航空轴承故障状态的识别和诊断。该方法首先通过卷积模块和双向GRU模块对原始振动信号进行特征提取;然后引入多头注意力模块,使网络同时注意并融合不同表示子空间的信息以提高故障特征的显著性水平;最后利用全连接模块和Softmax分类器对提取的特征进行高速轴承故障诊断。试验结果表明,提出的MADM该诊断方法可实现转速为12 000 r/min以上、剥落面积最小为0.5 mm~2的航空轴承高精度可靠诊断,且优于目前主流的深度诊断方法。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
基于Transformer的多特征融合的航空发动机剩余使用寿命预测
-
作者:
马依琳
陶慧玲
董启文
王晔
来源:
华东师范大学学报(自然科学版)
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
剩余使用寿命
-
描述:
发动机作为飞机的核心部件,对飞机运行起着至关重要的作用.对航空发动机做准确的剩余使用寿命预测,能够提前进行维护诊断,预防重大事故的发生,节约维护成本.针对现有的方法缺乏对不同时间步长的考虑以及不同传感器和操作条件之间关系的研究,提出了一种基于Transformer的多编码器特征输出融合的航空发动机剩余使用寿命预测方法.该方法选取两个不同时间长度的输入数据,使用排列熵对传感器之间的关系进行分析,并将操作条件数据独立提取特征.在广泛使用的航空发动机CMAPSS(Commercial Modular Aero-Propulsion System Simulation)数据集上进行了实验验证.实验结果表明,该方法优于现有的先进预测方法,可有效提高预测精度.
-
旋转式航空重力梯度仪动态测量误差传递模型与事后误差补偿
-
作者:
程一
李桐林
周帅
来源:
地球物理学报
年份:
2022
文献类型 :
期刊
关键词:
误差传递模型
事后误差补偿
深度学习
重力梯度仪
-
描述:
航空重力梯度测量技术可快速、高效地完成面积性重力梯度数据采集工作,在矿产资源勘查、军事目标探测等诸多科学领域具有广泛的应用.而航空重力梯度动态测量误差补偿方法是重力梯度动态测量数据处理中的一项重要工作.本文首先对旋转式重力梯度仪误差传递机理进行了定量分析,在综合考虑重力梯度仪系统非理想因素相互作用的情况下,建立了多种非理想因素与外部动态运动参数相耦合的误差传递模型;其次,提出了基于数据驱动的深度学习方法对航空动态测量误差进行补偿,并基于误差传递传递模型建立仿真数据样本集验证了方法的有效性;最后,通过航空重力梯度仪实测数据的处理和应用,验证了本文建立事后误差补偿方法的泛化性,进一步验证了本文建立方法在航空动态测量噪声抑制中的实用性,为航空重力梯度动态测量数据的处理提供技术储备.
-
基于深度学习的航空器场面轨迹预测
-
作者:
李雪
何元清
胡耀
来源:
现代计算机
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
深度学习
轨迹预测
-
描述:
轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理,设定网络模型参数,构建轨迹预测模型,提出了一种基于深度学习的航空器场面滑行轨迹预测方法。结合场面航空器运动状态的变化,改进长短期记忆网络的隐藏层结构,实现对航空器场面轨迹的中期预测。
-
基于注意力机制的航空图像旋转框目标检测
-
作者:
常洪彬
李文举
李文辉
来源:
吉林大学学报(理学版)
年份:
2022
文献类型 :
期刊
关键词:
航空图像
注意力机制
目标检测
深度学习
-
描述:
针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像目标检测模型.该模型首先采用RetinaNet作为基线模型,在原有检测器结构的基础上,增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE),用于捕获全局语义信息和通道关系,并预测粗糙包围盒与分类分数;最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理,进一步提升检测精度,得到最后的分类和回归结果.实验结果表明,该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%,优于其他先进的旋转框目标检测方法.
-
基于Transformer的航空目标检测算法
-
作者:
季长清
高志勇
秦静
汪祖民
来源:
无线电工程
年份:
2023
文献类型 :
期刊
关键词:
倾斜目标
Transformer
深度学习
航空检测
-
描述:
近几年,基于深度学习的目标检测算法在航空图像检测任务中得到了广泛的应用。针对传统的水平目标检测算法无法定位航空图像中大量密集排列的倾斜目标的问题,提出了TF-BBAVectors模型算法来实现航空图像中倾斜目标的检测任务。首先,为了避免深度卷积神经网络带来的网络退化等问题使用Transformer结构搭建特征提取网络;其次,针对密集地、小尺度图像目标的问题,采用多尺度特征融合的方法提升检测效果;最后针对倾斜目标检测的问题,通过边界框边缘感知向量表示任意角度的倾斜目标。在DOTA 1.0和SSDD+数据集上的部分测试结果表明,此方法的平均精度分别为72.39%和79.98%,证明了TF-BBAVectors模型算法的有效性。
-
基于深度学习的航空影像非正规垃圾堆放点监测技术研究与实践
-
作者:
李军吉
应良中
陶文旷
来源:
测绘通报
年份:
2023
文献类型 :
期刊
关键词:
深度学习
无人机
航空影像
非正规垃圾堆放点
-
描述:
城市化进程的加快导致垃圾随处堆放的问题日益突出,给城市的环境及居民的生活质量造成了严重的影响。利用遥感手段快速监测非正规垃圾堆放点具有及时性和高效性,因此具有十分重要的意义。本文结合无人机高分辨率航空影像及非正规垃圾堆分布特征,提出了按地域特征勾画样本数据集提取样本数据特征,采用U/Net和Swin Transformer融合模型,以及针对性改进训练流程开展非正规垃圾堆放点信息分类研究。试验以绍兴市越城区、柯桥区和上虞区作为研究区域,利用飞马航测无人机获取航空影像数据,对比分析了本文提出的方法和基于深度学习的典型地物要素提取方法在非正规垃圾堆放点监测上的应用,试验结果表明本文提出的方法准确率提高了1.72倍。