首页>
根据【关键词:注意力机制,扩张卷积,叶片损伤,发动机,目标检测,YOLOv4】搜索到相关结果 344 条
-
基于改进PSPNet网络的航空发动机烧蚀类损伤检测
-
作者:
陈纪宗
付茂洺
来源:
计算机仿真
年份:
2025
文献类型 :
期刊
关键词:
注意力机制
航空发动机
语义分割
深度学习
-
描述:
基于改进PSPNet网络的航空发动机烧蚀类损伤检测
-
基于目标图像块激活的航空图像目标检测技术研究
-
作者:
张佳
冯婕
张骏鹏
朱潇雨
来源:
航空科学技术
年份:
2025
文献类型 :
期刊
关键词:
航空图像
注意力机制
高效目标检测
卷积神经网络
-
描述:
基于目标图像块激活的航空图像目标检测技术研究
-
基于融合级联多尺度特征和注意力的航空发动机试验转子系统故障诊断方法
-
作者:
曾慧
张芹
来源:
机械设计与研究
年份:
2025
文献类型 :
期刊
关键词:
注意力机制
特征融合
故障诊断
深度学习
-
描述:
基于融合级联多尺度特征和注意力的航空发动机试验转子系统故障诊断方法
-
基于生成对抗网络的半监督遥感图像飞机检测
-
作者:
陈国炜
刘磊
郭嘉逸
潘宗序
胡文龙
来源:
中国科学院大学学报
年份:
2021
文献类型 :
期刊
关键词:
生成对抗网络
目标检测
半监督学习
-
描述:
遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作
-
基于生成对抗网络的半监督遥感图像飞机检测
-
作者:
陈国炜
刘磊
郭嘉逸
潘宗序
胡文龙
来源:
中国科学院大学学报
年份:
2021
文献类型 :
期刊
关键词:
生成对抗网络
目标检测
半监督学习
-
描述:
遥感图像上的飞机目标检测是一件极富挑战性的工作,吸引了广大研究者的兴趣。基于人工神经网络的方法是当前遥感图像飞机目标检测的主流方法,这类方法要求人工标记大量的数据用于训练。对训练图像的人工标注工作
-
基于YOLOv4的航空发动机叶片凸台目标检测
-
作者:
陈为
钟欣童
张婧
李泽辰
来源:
计算机仿真
年份:
2022
文献类型 :
期刊
关键词:
数据增强
目标检测
叶片凸台检测
聚类分析
-
描述:
针对航空发动机内部检测叶片凸台缺陷的问题,提出了一种基于YOLOv4(You Only Look Once)的目标检测算法。算法使用迁移学习加载了在coco公开数据集上训练的预训练模型权重,为了更好
-
基于CenterNet的航空遥感图像目标检测
-
作者:
杨曦中
高冠鸿
熊智
张玲
来源:
航空电子技术
年份:
2022
文献类型 :
期刊
关键词:
目标检测
深度学习
神经网络
CenterNet
-
描述:
为实现高精度的航空图像目标检测,将Anchor free的目标检测算法CenterNet应用到检测中,同时使用Resnet50主干网络,并引入CIoU损失替代原有损失函数对网络模型做出了改进。改进后
-
基于多分辨率遥感影像的飞机检测研究
-
作者:
侯宇青阳
全吉成
魏湧明
来源:
激光与光电子学进展
年份:
2018
文献类型 :
期刊
关键词:
显著性提取
遥感影像
目标检测
深度学习
-
描述:
结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行
-
基于改进候选区域网络的红外飞机检测
-
作者:
姜晓伟
王春平
付强
来源:
激光与红外
年份:
2019
文献类型 :
期刊
关键词:
聚类
红外飞机
卷积神经网络
目标检测
-
描述:
为较好地解决防空武器成像系统对空中红外飞机的检测问题。首先简要地概括了卷积神经网络的兴起和应用,其次在引入基于深度学习的目标检测模型Faster R-CNN的基础上,详细地介绍了经典K-means
-
基于军事飞机图像结合FCN的目标检测技术应用
-
作者:
张春雷
来源:
电子测试
年份:
2019
文献类型 :
期刊
关键词:
特征提取
全卷积神经网络
目标检测
-
描述:
图像分割是图像识别和目标检测的重要工作,军事图像目标检测与准确分割是分析军事目标的核心工作。针对这一工作,本文将全卷积神经网络(全卷积神经网络)应用在军事飞机图像的目标获取上,通过全卷积神经网络强大的特征提取和识别能力,准确获取目标区域,对分析图像信息提供参考性意义。
<
1
2
3
4
5
...
33
34
35
>