首页>
根据【关键词:机器学习,航空母舰,鲁棒性,仿真验证,甲板运动预估】搜索到相关结果 146 条
-
机器学习在航空发动机排气温度预测中的应用研究
-
作者:
易文川
王兴
王翔
唐庆如
来源:
舰船电子工程
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
机器学习
性能评估
排气温度
预测算法
-
描述:
排气温度是优化发动机性能和排放的关键参数,目标是在预测排气温度的基础上评估四种经典机器学习回归算法,即人工神经网络、随机森林、支持向量回归和门控循环单元。燃油流量、滑油压力和转速是模型输入,所有
-
基于航空发动机工况的叶尖间隙智能预测方法
-
作者:
杨阳
张建超
项洋
陆海鹰
来源:
航空动力学报
年份:
2023
文献类型 :
期刊
关键词:
叶尖间隙
特征提取
机器学习
零维仿真
空气系统
-
描述:
问题,通过机器学习模型对发动机工况参数进行特征提取,利用有效特征求解传热问题的边界,从而实现基于发动机工况参数快速预测实时叶尖间隙。机器学习模型的十折交叉验证集的平均准确率为98.9%,叶尖间隙模型的验证误差为4.3%,得到了不同工况下的叶尖间隙计算结果和冷气流量大小变化规律,计算耗时小于0.03s。
-
基于XGBoost的航空器动态滑行时间预测方法研究
-
作者:
赵征
冯事成
宋梅雯
胡莉
陆莎
来源:
航空工程进展
年份:
2022
文献类型 :
期刊
关键词:
机器学习
XGBoost
动态滑行时间
航空运输
样本量
-
描述:
滑行时间预测精度的关联,并以广州白云国际机场为分析对象进行实验。结果表明:采用XGBoost算法,进/离港滑行时间的预测精度分别达到了94.1%和96.6%,优于主流算法随机森林和支持向量回归;且实现白云机场动态滑行时间的精确和稳定预测所需样本量在32 000条(含)以上。
-
基于XGBoost的航空器动态滑行时间预测方法研究
-
作者:
赵征
冯事成
宋梅雯
胡莉
陆莎
来源:
航空工程进展
年份:
2022
文献类型 :
期刊
关键词:
机器学习
XGBoost
动态滑行时间
航空运输
样本量
-
描述:
滑行时间预测精度的关联,并以广州白云国际机场为分析对象进行实验。结果表明:采用XGBoost算法,进/离港滑行时间的预测精度分别达到了94.1%和96.6%,优于主流算法随机森林和支持向量回归;且实现白云机场动态滑行时间的精确和稳定预测所需样本量在32 000条(含)以上。
-
基于机器学习的进离场航空器排序优化研究
-
作者:
张洪杨
刘子彤
赵世豪
刘媛媛
冯晓康
张召悦
来源:
科技创新与应用
年份:
2023
文献类型 :
期刊
关键词:
遗传算法
机器学习
终端区
先到先服务算法
进离场航空器排序
-
描述:
为提高终端区运行效率,以进离场航空器作为研究对象,运用机器学习优化终端区航空器的进离场排序,以总延误时间最小为目标函数,综合考虑不同机型之间的尾流间隔,建立单跑道排序模型。运用遗传算法进行仿真实验
-
机器学习在航空发动机排气温度预测中的应用研究
-
作者:
易文川
王兴
王翔
唐庆如
来源:
舰船电子工程
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
机器学习
性能评估
排气温度
预测算法
-
描述:
排气温度是优化发动机性能和排放的关键参数,目标是在预测排气温度的基础上评估四种经典机器学习回归算法,即人工神经网络、随机森林、支持向量回归和门控循环单元。燃油流量、滑油压力和转速是模型输入,所有
-
基于航空发动机工况的叶尖间隙智能预测方法
-
作者:
杨阳
张建超
项洋
陆海鹰
来源:
航空动力学报
年份:
2023
文献类型 :
期刊
关键词:
叶尖间隙
特征提取
机器学习
零维仿真
空气系统
-
描述:
问题,通过机器学习模型对发动机工况参数进行特征提取,利用有效特征求解传热问题的边界,从而实现基于发动机工况参数快速预测实时叶尖间隙。机器学习模型的十折交叉验证集的平均准确率为98.9%,叶尖间隙模型的验证误差为4.3%,得到了不同工况下的叶尖间隙计算结果和冷气流量大小变化规律,计算耗时小于0.03s。
-
基于自编码器的飞机类型识别方法
-
作者:
张朝柱
黄妤宁
来源:
无线电工程
年份:
2019
文献类型 :
期刊
关键词:
机器学习
梅尔倒谱系数
自编码器
飞机类型识别
联合特征提取
-
描述:
针对人工监听识别飞机类型难度大的问题,提出了根据不同飞机发动机产生的不同噪声,通过特征提取,进而分类识别出飞机类型的一种方法。在梅尔倒谱系数(MFCC)算法特征提取的基础上,对提取的24维特征向量通过自编码器进行分类,对分类的准确率进行了仿真。实验结果表明,每一类声信号准确率均高于85%且平均识别准确率为95.98%;针对单类别实际飞机声信号的分类准确率较其他类别准确率差的问题,提出了通过小波包分解-MFCC联合特征提取对自编码器进行优化。实验结果表明,每一类声信号准确率均高于90%且平均准确率为97.74%。
-
物料供给不确定环境下的飞机移动生产线动态调度方法
-
作者:
陆志强
胡鑫铭
朱宏伟
来源:
同济大学学报(自然科学版)
年份:
2019
文献类型 :
期刊
关键词:
动态调度
机器学习
飞机移动生产线
局部前瞻搜索
支持向量数据描述
-
描述:
飞机装配所需的物料种类复杂且数量巨大,其准时供给往往存在较大的不确定性.为了有效解决物料供给不确定环境下的飞机移动生产线动态调度问题,将机器学习中的支持向量数据描述技术(SVDD)与传统的调度方法
-
基于自编码器的飞机类型识别方法
-
作者:
张朝柱
黄妤宁
来源:
无线电工程
年份:
2019
文献类型 :
期刊
关键词:
机器学习
梅尔倒谱系数
自编码器
飞机类型识别
联合特征提取
-
描述:
针对人工监听识别飞机类型难度大的问题,提出了根据不同飞机发动机产生的不同噪声,通过特征提取,进而分类识别出飞机类型的一种方法。在梅尔倒谱系数(MFCC)算法特征提取的基础上,对提取的24维特征向量通过自编码器进行分类,对分类的准确率进行了仿真。实验结果表明,每一类声信号准确率均高于85%,且平均识别准确率为95.98%。针对单类别实际飞机声信号的分类准确率较其他类别准确率差的问题,提出了通过小波包分解-MFCC联合特征提取对自编码器进行优化。实验结果表明,每一类声信号准确率均高于90%,且平均准确率为97.74%。
<
1
2
3
...
9
10
11
...
13
14
15
>