按文献类别分组
按栏目分组
关键词
航空激光增材制造零部件潜在缺陷检测
作者: 赵慧凯   来源: 激光杂志 年份: 2020 文献类型 : 期刊 关键词: 航空   激光   制造零部件   红外图像   缺陷检测  
描述: 传统的航空激光增材制造零部件潜在缺陷检测方法检测准确度低,图像特征查全率低。基于上述问题,提出一种基于图像识别技术的航空激光增材制造零部件潜在缺陷检测方法。采用红外成像技术进行航空激光增材制造零部件
超声红外热像技术发展现状及其在航空材料缺陷检测中的应用
作者: 冯辅周   朱俊臻   李志农   来源: 航空制造技术 年份: 2023 文献类型 : 期刊 关键词: 超声红外热像   无损检测   主动热像   航空材料   缺陷检测  
描述: 超声红外热像技术兼具缺陷定位精准、热像信噪比高、材料适用范围广等特点,在航空材料检测方面已有不俗表现,主要应用于发动机叶片、起落架、机翼、蜂窝夹层等关键部件和结构的缺陷检测。在简要介绍超声红外热像
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对
基于LabVIEW Vision的航空炮弹缺陷检测方案设计
作者: 蔺佳哲   王茜   耿广龙   来源: 火力与指挥控制 年份: 2018 文献类型 : 期刊 关键词: Vision   航空炮弹   LabVIEW   缺陷检测   虚拟仪器技术  
描述: 航空炮弹在勤务保障过程中,容易受到环境和外力的破坏而造成表面的损伤,影响正常的飞行训练甚至危及载机安全。采用虚拟仪器平台提供的LabVIEW Vision视觉开发工具包,结合灰度直方图筛选、Saturation分量图像提取、灰度形态学Erode和Dilate变换以及最大熵阈值分割的图像处理等技术手段,对待测航空炮弹图像进行分析处理,精确判断炮弹锈蚀和划痕缺陷问题。试验结果表明,系统具有较高的可行性和可靠性,可以实现炮弹缺陷的快速鲁棒检测,提高了炮弹检测的效率和精度,对于提升航空弹药保障信息化、智能化水平具有重要意义。
融合注意力和多尺度特征的航空发动机缺陷检测
作者: 赵崇林   朱江   胡永进   李祖泽   王鹏举   谢涛   来源: 北京航空航天大学学报 年份: 2023 文献类型 : 期刊 关键词: 注意力机制   航空发动机   YOLOv5   深度学习   缺陷检测  
描述: 航空发动机的结构完整性关乎飞行安全。目前基于孔探技术的航空发动机缺陷检测以人工操作为主。为提高检测精度和效率,提出了一种融合注意力和多尺度特征的航空发动机缺陷智能检测算法,以辅助孔探工作。首先,针对
基于改进EfficientDet的飞机蒙皮缺陷检测方法
作者: 卜晓燕     张宪法     李明慧     葛恩德     冯静璇     曹嘉玲   来源: 航空制造技术 年份: 2025 文献类型 : 期刊 关键词: 飞机蒙皮   注意力机制   多尺度特征融合   尺度感知   缺陷检测  
描述: 基于改进EfficientDet的飞机蒙皮缺陷检测方法
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFF-YOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFF-YOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢     肖洪     吴丁毅   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFFYOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷
基于GSV-YOLO的飞机起落架缺陷检测方法研究
作者: 李博     许子威     钟飞     陈义华   来源: 电子测量技术 年份: 2025 文献类型 : 期刊 关键词: YOLOv7   tiny   深度学习   Ghost卷积   飞机起落架   缺陷检测  
描述: 基于GSV-YOLO的飞机起落架缺陷检测方法研究
< 1 2 3
Rss订阅