按文献类别分组
关键词
基于空时模型的航空管路卡箍故障诊断研究
作者: 王铜宇     袁晟友     李开泰     米承权     林洁如     杨同光   来源: 机床与液压 年份: 2024 文献类型 : 期刊 关键词: 航空管路卡箍   故障诊断   空间特征提取   时间特征提取  
描述: 针对航空液压管路卡箍振动信号受强噪声干扰,导致航空卡箍故障难以精准识别的问题,提出一种空时模型的航空卡箍故障诊断新方法。建立空间特征提取模型,对航空卡箍的故障特征进行局部融合。在空间模型中引入GRU模块,提取航空卡箍故障信号中的全局特征。结果表明:设计的空时故障诊断模型可实现航空卡箍故障的精准识别。与目前所用的深度卷积神经网络模型、门控循环单元神经网络模型、循环神经网络模型、支持向量机和误差反向传播神经网络模型等5种先进的故障诊断方法进行对比分析,所提方法对航空卡箍故障识别具有优越性。
基于优化CNN的航空液压管路卡箍故障诊断
作者: 窦金鑫   薛政坤   于晓光   范玉鑫   刘忠鑫   杨同光   来源: 机床与液压 年份: 2021 文献类型 : 期刊 关键词: 液压管路卡箍   卷积神经网络   故障诊断   优化变分模态分解  
描述: 针对航空发动机液压卡箍-管路系统具有高度复杂性,导致卡箍振动信号存在非线性、非平稳性,从而难以提取出卡箍故障状态有效信息的问题,提出一种基于优化变分模态分解(VMD)与卷积神经网络(CNN)的卡箍智能故障诊断方法。基于优化的VMD将液压管路系统-卡箍振动信号分解成一系列固有模态函数;将含有卡箍故障信号明显的IMF输入到卷积神经网络训练模型,采用CNN进行自主特征学习和模式识别。并将该方法应用于实例中,结果表明:该方法不仅能有效地对信号进行分解,同时对不同类型的卡箍故障可达到精准识别和故障诊断。
基于优化CNN的航空液压管路卡箍故障诊断
作者: 窦金鑫   薛政坤   于晓光   范玉鑫   刘忠鑫   杨同光   来源: 机床与液压 年份: 2021 文献类型 : 期刊 关键词: 液压管路卡箍   卷积神经网络   故障诊断   优化变分模态分解  
描述: 针对航空发动机液压卡箍-管路系统具有高度复杂性,导致卡箍振动信号存在非线性、非平稳性,从而难以提取出卡箍故障状态有效信息的问题,提出一种基于优化变分模态分解(VMD)与卷积神经网络(CNN)的卡箍智能故障诊断方法。基于优化的VMD将液压管路系统-卡箍振动信号分解成一系列固有模态函数;将含有卡箍故障信号明显的IMF输入到卷积神经网络训练模型,采用CNN进行自主特征学习和模式识别。并将该方法应用于实例中,结果表明:该方法不仅能有效地对信号进行分解,同时对不同类型的卡箍故障可达到精准识别和故障诊断。
多尺度特征组合优化的航空液压管路故障诊断
作者: 薛政坤   汪曦   于晓光   王宠   刘思远   张景博   来源: 机床与液压 年份: 2022 文献类型 : 期刊 关键词: 变分模态分解   故障诊断   航空液压管路   优化多尺度散布熵  
描述: 为根据管路振动信号准确识别故障类型,提出一种多尺度特征组合优化的航空液压管路故障诊断方法。利用能量比值法确定变分模态分解参数,实现管路振动信号的优化分解,选取最佳模态分量信号进行重构,重构后的信号作为分析信号。选择重构信号的优化多尺度散布熵作为特征指标,构建具有代表性的特征向量集并输入到利用麻雀搜索算法优化的极限学习机网络进行训练,以实现航空液压管路的故障诊断。结果表明:利用所提方法能够准确识别航空液压管路故障类型,为区分航空液压管路故障提供了一种可行的思路。
多尺度特征组合优化的航空液压管路故障诊断
作者: 薛政坤   汪曦   于晓光   王宠   刘思远   张景博   来源: 机床与液压 年份: 2022 文献类型 : 期刊 关键词: 变分模态分解   故障诊断   航空液压管路   优化多尺度散布熵  
描述: 为根据管路振动信号准确识别故障类型,提出一种多尺度特征组合优化的航空液压管路故障诊断方法。利用能量比值法确定变分模态分解参数,实现管路振动信号的优化分解,选取最佳模态分量信号进行重构,重构后的信号作为分析信号。选择重构信号的优化多尺度散布熵作为特征指标,构建具有代表性的特征向量集并输入到利用麻雀搜索算法优化的极限学习机网络进行训练,以实现航空液压管路的故障诊断。结果表明:利用所提方法能够准确识别航空液压管路故障类型,为区分航空液压管路故障提供了一种可行的思路。
基于CEEMD航空液压管路故障诊断方法研究
作者: 崔芷宁   于晓光   孙杰   于喜金   冉子晴   张小龙   来源: 机床与液压 年份: 2023 文献类型 : 期刊 关键词: 深度残差网络   航空液压管路   自适应白噪声完备总体经验模态分解   早期故障预测  
描述: ResNet网络结构,并将获得的分量输入到深度残差网络(ResNet)进行训练测试。实验结果表明:CEEMDAN-ResNet模型故障识别率可达99.78%,故障预测训练迭代到1 200次时,准确率将会达到
基于CEEMD航空液压管路故障诊断方法研究
作者: 崔芷宁   于晓光   孙杰   于喜金   冉子晴   张小龙   来源: 机床与液压 年份: 2023 文献类型 : 期刊 关键词: 深度残差网络   航空液压管路   自适应白噪声完备总体经验模态分解   早期故障预测  
描述: ResNet网络结构,并将获得的分量输入到深度残差网络(ResNet)进行训练测试。实验结果表明:CEEMDAN-ResNet模型故障识别率可达99.78%,故障预测训练迭代到1 200次时,准确率将会达到
< 1
Rss订阅