关键词
Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data
作者: Davide   Donati     Doug   Stead     Bernhard   Rabus     Jeanine   Engelbrecht     John   J.   Clague     Stephen   D.   Newman     Mirko   Francioni   来源: Remote Sensing 年份: 2023 文献类型 : 期刊 关键词: Motion   multisensor   SAR   Analysis   LiDAR   displacement   from   landslide   monitoring   characterization   structure  
描述: acceleration of the movement) between 2010 and 2020. Significant spatial variations of displacement
EGMT-CD: Edge-Guided Multimodal Transformers Change Detection from Satellite and Aerial Images
作者: Yunfan   Xiang     Xiangyu   Tian     Yue   Xu     Xiaokun   Guan     Zhengchao   Chen   来源: Remote Sensing 年份: 2023 文献类型 : 期刊 关键词: sensing   detection   images   edge   Transformer   feature   change   remote   alignment   heterogeneous  
描述: Change detection from heterogeneous satellite and aerial images plays a progressively important role in many fields, including disaster assessment, urban construction, and land use monitoring. Currently, researchers have mainly devoted their attention to change detection using homologous image pairs and achieved many remarkable results. It is sometimes necessary to use heterogeneous images for change detection in practical scenarios due to missing images, emergency situations, and cloud and fog occlusion. However, heterogeneous change detection still faces great challenges, especially using satellite and aerial images. The main challenges in satellite and aerial image change detection are related to the resolution gap and blurred edge. Previous studies used interpolation or shallow feature alignment before traditional homologous change detection methods, which ignored the high-level feature interaction and edge information. Therefore, we propose a new heterogeneous change detection model based on multimodal transformers combined with edge guidance. In order to alleviate the resolution gap between satellite and aerial images, we design an improved spatially aligned transformer (SP-T) with a sub-pixel module to align the satellite features to the same size of the aerial ones supervised by a token loss. Moreover, we introduce an edge detection branch to guide change features using the object edge with an auxiliary edge-change loss. Finally, we conduct considerable experiments to verify the effectiveness and superiority of our proposed model (EGMT-CD) on a new satellite–aerial heterogeneous change dataset, named SACD. The experiments show that our method (EGMT-CD) outperforms many previously superior change detection methods and fully demonstrates its potential in heterogeneous change detection from satellite–aerial images.
Self-Adaptive-Filling Deep Convolutional Neural Network Classification Method for Mountain Vegetation Type Based on High Spatial Resolution Aerial Images
作者: Shiou   Li     Xianyun   Fei     Peilong   Chen     Zhen   Wang     Yajun   Gao     Kai   Cheng     Huilong   Wang     Yuanzhi   Zhang   来源: Remote Sensing 年份: 2023 文献类型 : 期刊 关键词: based   image   sensing   deep   images   vegetation   learning   type   classification   aerial   remote   mountain   high   Analysis   spatial   object  
描述: The composition and structure of mountain vegetation are complex and changeable, and thus urgently require the integration of Object-Based Image Analysis (OBIA) and Deep Convolutional Neural Networks (DCNNs). However, while integration technology studies are continuing to increase, there have been few studies that have carried out the classification of mountain vegetation by combining OBIA and DCNNs, for it is difficult to obtain enough samples to trigger the potential of DCNNs for mountain vegetation type classification, especially using high-spatial-resolution remote sensing images. To address this issue, we propose a self-adaptive-filling method (SAF) to incorporate the OBIA method to improve the performance of DCNNs in mountain vegetation type classification using high-spatial-resolution aerial images. Using this method, SAF technology was employed to produce enough regular sample data for DCNNs by filling the irregular objects created by image segmenting using interior adaptive pixel blocks. Meanwhile, non-sample segmented image objects were shaped into different regular rectangular blocks via SAF. Then, the classification result was defined by voting combining the DCNN performance. Compared to traditional OBIA methods, SAF generates more samples for the DCNN and fully utilizes every single pixel of the DCNN input. We design experiments to compare them with traditional OBIA and semantic segmentation methods, such as U-net, MACU-net, and SegNeXt. The results show that our SAF-DCNN outperforms traditional OBIA in terms of accuracy and it is similar to the accuracy of the best performing method in semantic segmentation. However, it reduces the common pretzel phenomenon of semantic segmentation (black and white noise generated in classification). Overall, the SAF-based OBIA using DCNNs, which is proposed in this paper, is superior to other commonly used methods for vegetation classification in mountainous areas.
Characterization of the Fels Landslide (Alaska) Using Combined Terrestrial, Aerial, and Satellite Remote Sensing Data
作者: Davide   Donati     Doug   Stead     Bernhard   Rabus     Jeanine   Engelbrecht     John   J.   Clague     Stephen   D.   Newman     Mirko   Francioni   来源: Remote Sensing 年份: 2023 文献类型 : 期刊 关键词: Motion   multisensor   SAR   Analysis   LiDAR   displacement   from   landslide   monitoring   characterization   structure  
描述: acceleration of the movement) between 2010 and 2020. Significant spatial variations of displacement
EGMT-CD: Edge-Guided Multimodal Transformers Change Detection from Satellite and Aerial Images
作者: Yunfan   Xiang     Xiangyu   Tian     Yue   Xu     Xiaokun   Guan     Zhengchao   Chen   来源: Remote Sensing 年份: 2023 文献类型 : 期刊 关键词: sensing   detection   images   edge   Transformer   feature   change   remote   alignment   heterogeneous  
描述: Change detection from heterogeneous satellite and aerial images plays a progressively important role in many fields, including disaster assessment, urban construction, and land use monitoring. Currently, researchers have mainly devoted their attention to change detection using homologous image pairs and achieved many remarkable results. It is sometimes necessary to use heterogeneous images for change detection in practical scenarios due to missing images, emergency situations, and cloud and fog occlusion. However, heterogeneous change detection still faces great challenges, especially using satellite and aerial images. The main challenges in satellite and aerial image change detection are related to the resolution gap and blurred edge. Previous studies used interpolation or shallow feature alignment before traditional homologous change detection methods, which ignored the high-level feature interaction and edge information. Therefore, we propose a new heterogeneous change detection model based on multimodal transformers combined with edge guidance. In order to alleviate the resolution gap between satellite and aerial images, we design an improved spatially aligned transformer (SP-T) with a sub-pixel module to align the satellite features to the same size of the aerial ones supervised by a token loss. Moreover, we introduce an edge detection branch to guide change features using the object edge with an auxiliary edge-change loss. Finally, we conduct considerable experiments to verify the effectiveness and superiority of our proposed model (EGMT-CD) on a new satellite–aerial heterogeneous change dataset, named SACD. The experiments show that our method (EGMT-CD) outperforms many previously superior change detection methods and fully demonstrates its potential in heterogeneous change detection from satellite–aerial images.
Self-Adaptive-Filling Deep Convolutional Neural Network Classification Method for Mountain Vegetation Type Based on High Spatial Resolution Aerial Images
作者: Shiou   Li     Xianyun   Fei     Peilong   Chen     Zhen   Wang     Yajun   Gao     Kai   Cheng     Huilong   Wang     Yuanzhi   Zhang   来源: Remote Sensing 年份: 2023 文献类型 : 期刊 关键词: based   image   sensing   deep   images   vegetation   learning   type   classification   aerial   remote   mountain   high   Analysis   spatial   object  
描述: The composition and structure of mountain vegetation are complex and changeable, and thus urgently require the integration of Object-Based Image Analysis (OBIA) and Deep Convolutional Neural Networks (DCNNs). However, while integration technology studies are continuing to increase, there have been few studies that have carried out the classification of mountain vegetation by combining OBIA and DCNNs, for it is difficult to obtain enough samples to trigger the potential of DCNNs for mountain vegetation type classification, especially using high-spatial-resolution remote sensing images. To address this issue, we propose a self-adaptive-filling method (SAF) to incorporate the OBIA method to improve the performance of DCNNs in mountain vegetation type classification using high-spatial-resolution aerial images. Using this method, SAF technology was employed to produce enough regular sample data for DCNNs by filling the irregular objects created by image segmenting using interior adaptive pixel blocks. Meanwhile, non-sample segmented image objects were shaped into different regular rectangular blocks via SAF. Then, the classification result was defined by voting combining the DCNN performance. Compared to traditional OBIA methods, SAF generates more samples for the DCNN and fully utilizes every single pixel of the DCNN input. We design experiments to compare them with traditional OBIA and semantic segmentation methods, such as U-net, MACU-net, and SegNeXt. The results show that our SAF-DCNN outperforms traditional OBIA in terms of accuracy and it is similar to the accuracy of the best performing method in semantic segmentation. However, it reduces the common pretzel phenomenon of semantic segmentation (black and white noise generated in classification). Overall, the SAF-based OBIA using DCNNs, which is proposed in this paper, is superior to other commonly used methods for vegetation classification in mountainous areas.
< 1
Rss订阅