首页>
根据【检索词:GRU】搜索到相关结果 10 条
-
基于数据融合与GRU的航空发动机剩余寿命预测
-
作者:
李路云
王海瑞
朱贵富
来源:
空军工程大学学报
年份:
2022
文献类型 :
期刊
关键词:
维纳过程
航空发动机
寿命预测
自助法
门控循环单元
多源传感器数据融合
-
描述:
构造一维复合健康指标;然后,利用Bootstrap方法对一维复合健康指标进行有放回抽样,获取n组发动机退化特征样本;最后,利用一维复合健康指标和n组发动机退化特征样本构建“n+1”个基于GRU
-
基于数据融合与GRU的航空发动机剩余寿命预测
-
作者:
李路云
王海瑞
朱贵富
来源:
空军工程大学学报
年份:
2022
文献类型 :
期刊
关键词:
维纳过程
航空发动机
寿命预测
自助法
门控循环单元
多源传感器数据融合
-
描述:
构造一维复合健康指标;然后,利用Bootstrap方法对一维复合健康指标进行有放回抽样,获取n组发动机退化特征样本;最后,利用一维复合健康指标和n组发动机退化特征样本构建“n+1”个基于GRU
-
基于XGB-GRU的飞机俯仰预测模型
-
作者:
张鹏
刘静静
胡芳语
来源:
第十七届中国智能交通年会科技论文集
年份:
2022
文献类型 :
会议论文
关键词:
XGB
俯仰角
姿态控制系统
特征选择
GRU
-
描述:
基于XGB-GRU的飞机俯仰预测模型
-
基于XGB-GRU的飞机俯仰预测模型
-
作者:
张鹏
刘静静
胡芳语
来源:
第十七届中国智能交通年会科技论文集
年份:
2022
文献类型 :
会议论文
关键词:
XGB
俯仰角
姿态控制系统
特征选择
GRU
-
描述:
基于XGB-GRU的飞机俯仰预测模型
-
基于GRU模型的高机动试飞航空器轨迹预测方法研究
-
作者:
张会英
彭曼
杨地
来源:
长江信息通信
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
轨迹预测
防相撞
门控循环神经网络
-
描述:
文章利用注意力机制提取试飞运动轨迹数据中的有效信息,采用门控循环神经网络(Gated Recurrent Neural Network,GRU)模型处理时序问题,提出了一种高机动试飞航空器实时多步
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上
-
基于GRU模型的高机动试飞航空器轨迹预测方法研究
-
作者:
张会英
彭曼
杨地
来源:
长江信息通信
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
轨迹预测
防相撞
门控循环神经网络
-
描述:
文章利用注意力机制提取试飞运动轨迹数据中的有效信息,采用门控循环神经网络(Gated Recurrent Neural Network,GRU)模型处理时序问题,提出了一种高机动试飞航空器实时多步
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上