关键词
基于多分辨率遥感影像的飞机检测研究
作者: 侯宇青阳   全吉成   魏湧明   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 显著性提取   遥感影像   目标检测   深度学习  
描述: 从多分辨遥感图像特点、深度学习网络结构和飞机目标尺寸三个方面进行研究,明确了检测结果与图像中飞机目标像素数的定量关系,对影响图像中目标像素数的两个因素飞机实际尺寸和图像分辨率关系进行定量分析。在检测结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行图像目标区域提取,解决了不同分辨率的大尺寸遥感影像中飞机检测率低的问题,通过与原始检测算法和其他图像处理方法对比验证了本文设计算法的有效性,在检测准确率和检测速度上均得到明显提升。
遥感图像中飞机目标提取的深度学习方法研究
作者: 赵丹新   来源: 中国科学院大学(中国科学院上海技术物理研究所) 年份: 2018 文献类型 : 学位论文 关键词: 遥感图像   多尺度检测   目标检测   深度学习   透视校正  
描述: 遥感图像中飞机目标提取的深度学习方法研究
大面幅光学遥感影像飞行器目标快速检测
作者: 张作省   来源: 中国科学院大学(中国科学院长春光学精密机械与物理研究所) 年份: 2018 文献类型 : 学位论文 关键词: YOLO   遥感影像   遥感视频   飞行器检测   深度学习   目标识别   机场检测   残差网络  
描述: 大面幅光学遥感影像飞行器目标快速检测
基于矩阵信息几何的飞机尾流目标检测方法
作者: 刘俊凯*①   李健兵②     梁①   陈忠宽①   蔡益朝①   来源: 雷达学报 年份: 2018 文献类型 : 期刊 关键词: 矩阵信息几何   飞机尾流   目标检测   矩阵CFAR   矩阵流形  
描述: 矩阵信息几何在雷达信号处理和目标检测中的应用是一个正在引起关注的研究方向。飞机尾流回波经过傅里叶变换后,其功率谱是展宽的,传统动目标检测(MTD)方法未能对展宽的功率谱进行有效积累。针对飞机尾流目标检测问题,基于矩阵信息几何理论,该文提出了一种矩阵恒虚警率(CFAR)检测方法,该方法中观测数据协方差矩阵构成一个矩阵流形,类比CFAR检测的思想,利用检测单元协方差矩阵与参考单元协方差矩阵均值间定义的距离作为检测统计量。最后利用噪声中仿真的尾流回波数据,分析了黎曼均值的迭代估计性能、尾流目标协方差矩阵与噪声协方差矩阵的测地线距离随信噪比的变化,比较了常规MTD检测方法和矩阵CFAR检测方法的检测性能。
基于矩阵信息几何的飞机尾流目标检测方法
作者: 刘俊凯*①   李健兵②     梁①   陈忠宽①   蔡益朝①   来源: 雷达学报 年份: 2018 文献类型 : 期刊 关键词: 矩阵信息几何   飞机尾流   目标检测   矩阵CFAR   矩阵流形  
描述: 矩阵信息几何在雷达信号处理和目标检测中的应用是一个正在引起关注的研究方向。飞机尾流回波经过傅里叶变换后,其功率谱是展宽的,传统动目标检测(MTD)方法未能对展宽的功率谱进行有效积累。针对飞机尾流目标检测问题,基于矩阵信息几何理论,该文提出了一种矩阵恒虚警率(CFAR)检测方法,该方法中观测数据协方差矩阵构成一个矩阵流形,类比CFAR检测的思想,利用检测单元协方差矩阵与参考单元协方差矩阵均值间定义的距离作为检测统计量。最后利用噪声中仿真的尾流回波数据,分析了黎曼均值的迭代估计性能、尾流目标协方差矩阵与噪声协方差矩阵的测地线距离随信噪比的变化,比较了常规MTD检测方法和矩阵CFAR检测方法的检测性能。
采用深度网络的飞机表面图像损伤检测与识别
作者: 刘恒鑫   来源: 北京邮电大学 年份: 2018 文献类型 : 学位论文 关键词: 飞机蒙皮   卷积神经网络   图像处理   目标检测   无损检测  
描述: 采用深度网络的飞机表面图像损伤检测与识别
基于深度学习的航空器异常飞行状态识别
作者: 吴奇   储银雪   来源: 民用飞机设计与研究 年份: 2018 文献类型 : 期刊 关键词: 飞行状态识别   深度学习   高斯过程  
描述: 飞行设备快速存取记录仪(Quick Access Recorder,以下简称QAR)保留了原始航班各类重要飞行参数在内的航行信息,使研究分析航空器实时状况和保障飞行质量成为可能。针对QAR数据高维大样本的特点,在如今大数据背景下,除了传统机理建模分析航空器飞行状态外,采用深度学习的方式建立基于数据驱动的航空器飞行状态识别模型,理论与实用意义兼具。通过对真实QAR飞行数据的研究,开发了基于深度稀疏受限玻尔兹曼机的异常飞行状态识别程序。首先利用小波降噪技术对原始飞行数据进行预处理清洗,在一系列典型飞行参数上提取经典时域特征以及小波奇异熵等信息熵特征构成特征集。在此基础上,分别利用经典的线性主元分析技术和深度稀疏玻尔兹曼机对特征集进行有效降维,最后采用四折交叉验证方式,通过高斯过程分类器实现对飞行状态的辨识。实验结果显示,基于深度受限玻尔兹曼机-高斯过程分类的飞行状态识别具有较高分类准确性。
基于卷积神经网络的遥感图像飞机目标识别
作者: 晁安娜   刘坤   来源: 微型机与应用 年份: 2018 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   飞机识别   深度学习  
描述: 遥感图像的识别技术一直被广泛运用于民用和军事领域。针对采集到的遥感飞机图像存在大量干扰,如遮挡、噪声、视角变化等因素,提出一种改进的基于卷积神经网络的遥感图像目标识别算法。在复杂环境下,运用卷积神经网络对飞机目标进行识别,避免了在特征提取过程中信息的丢失,提高了识别率。实验结果证明了该算法在遥感图像飞机目标识别中的可行性,能克服尺度变化及目标姿态变化等因素的影响。同时提出的算法较传统CNN、BP神经网络和支持向量机(SVM)方法具有更好的识别效果,鲁棒性更强。
航空轮胎有限元分析
作者: 刘坤   苏彤   王典   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   模糊不变   目标识别  
描述: 由于采集、运动以及聚焦等导致的目标模糊是目标识别率偏低的一个主要问题,因此本文提出一种基于模糊不变卷积神经网络模型BICNN(Blur-Invariant Convolutional Neural Network)的目标识别方法。与仅优化多项式逻辑回归目标的传统CNN(Convolutional Neural Network)模型的训练不同,BICNN引入和学习一个新的模糊不变层改善模糊目标的识别率,提高目标识别的鲁棒性。首先,BICNN通过增加模糊不变约束项及正则化来优化本文提出的模糊不变目标函数进行训练;其次,通过减小模糊不变目标函数值来规定训练样本在模糊之前和之后的特征映射相一致,最终实现模糊不变性。测试结果表明验证,BICNN改善了因模糊造成识别率降低的问题,进而提升运动模糊图像的识别率。
某型飞机腹板裂纹分析及改装设计
作者: 彭军   郭晨阳   张勇   张赟   杨欣毅   来源: 系统仿真技术 年份: 2018 文献类型 : 期刊 关键词: 航空发动机   故障诊断   深度学习   神经网络  
描述: 引入深度学习理论,利用深度置信网络算法对由仿真软件生成的航空发动机部件性能衰退故障数据进行求解。与反向传播(BP)神经网络算法和径向基函数(RBF)神经网络算法的比较结果表明:虽然深度学习训练耗费较长时间,但是深度置信网络算法结构克服了浅层网络算法结构的不足,其计算结果能够达到更高诊断精度,并具有较好的抗噪性能。
< 1 2
Rss订阅