首页
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻动态
全部
图书
期刊
学位论文
会议论文
报纸
图片
视频
新闻
首页>
根据【关键词:
进排气故障,Transformer,交叉注意力,航空活塞发动机,卷积神经网络(CNN)
】搜索到相关结果
21
条
按文献类别分组
期刊
(70)
学位论文
(38)
会议论文
(8)
按栏目分组
期刊
(70)
学位论文
(38)
会议论文
(8)
按年份分组
2025
(7)
2024
(21)
2023
(32)
2022
(9)
2021
(14)
2020
(9)
2019
(11)
2018
(10)
2017
(3)
按来源分组
内燃机与配件
(6)
热加工工艺
(4)
电子科技大学
(4)
航空维修与工程
(3)
机电信息
(3)
雷达学报
(3)
振动与冲击
(3)
浙江大学
(2)
民航学报
(2)
科技创新导报
(2)
小型内燃机与车辆技术
(2)
内燃机
(2)
重庆理工大学学报(自然科学)
(2)
重庆交通大学
(2)
北京航空航天大学学报
(2)
中国民航大学
(2)
装备制造技术
(1)
润滑与密封
(1)
成都航空职业技术学院学报
(1)
北京理工大学学报
(1)
山东工业技术
(1)
计算机技术与发展
(1)
电光与控制
(1)
航天返回与遥感
(1)
兰州交通大学学报
(1)
科学技术与工程
(1)
弹箭与制导学报
(1)
计算机工程与应用
(1)
无线电工程
(1)
华东师范大学学报(自然科学版)
(1)
关键词
混合注意力特征增强的航空图像目标检测
作者:
管文青
周世斌
张国鹏
来源:
计算机工程与应用
年份:
2024
文献类型 :
期刊
关键词:
航空图像
旋转目标检测
注意力机制
Transformer
描述:
针对航空图像背景复杂、目标分布密集、尺度差异大等特点,提出一种新的航空图像检测网络,称为混合注意力网络(hybrid attention network, HA-Net)。在主干网络中设计同时兼顾局部注意力和全局注意力的Transformer结构,利用注意力消除背景噪音,使密集目标边界更加清晰,提升密集目标特征提取能力;在特征融合前,提出使用连续平均池化和最大池化的空间金字塔池化模块来丰富图像特征信息,增强不同尺度目标的表示能力;在特征融合时设计特征重构模块重新调整特征金字塔的特征信息,此模块混合了跨尺度空间注意力和非局部通道注意力,可以减少不必要信息的干扰,提升多尺度目标的检出率。在DOTA航空数据集上对HA-Net进行评估,在单尺度和多尺度测试上评估指标mAP分别达到77.04%和78.28%,较基准网络,mAP分别提升了2.38个百分点和3.62个百分点。在HRSC2016数据集上mAP达到89.95%。实验结果的提升证明了HA-Net在航空图像目标检测中的有效性。
基于知识图谱的民航空管安全分析方法研究与应用
作者:
赵宇鹏.
来源:
电子科技大学
年份:
2024
文献类型 :
学位论文
关键词:
子图提取
图神经网络
Transformer
链接预测
描述:
基于知识图谱的民航空管安全分析方法研究与应用
基于知识图谱的民航空管安全分析方法研究与应用
作者:
赵宇鹏.
来源:
电子科技大学
年份:
2024
文献类型 :
学位论文
关键词:
子图提取
图神经网络
Transformer
链接预测
描述:
基于知识图谱的民航空管安全分析方法研究与应用
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
作者:
张善文
邵彧
李萍
令伟锋
来源:
弹箭与制导学报
年份:
2024
文献类型 :
期刊
关键词:
Transformer
Net与Transformer
航空遥感图像飞机检测
多尺度U
Net
描述:
航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer (MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。
低转速航空发动机滚动轴承故障深度异常检测方法
作者:
康玉祥
陈果
盛嘉玖
王浩
尉询楷
来源:
振动与冲击
年份:
2024
文献类型 :
期刊
关键词:
滚动轴承
航空发动机
Transformer
深度异常检测
低转速
描述:
针对航空发动机滚动轴承在低转速状态下故障难检测的问题,提出了一种基于Transformer框架的深度支持向量描述方法用于检测低转速滚动轴承的故障。首先,构建了基于Transformer模型的振动特征提取主干网络。然后,将所提取的特征输入一个三层自编码器结构,用于计算网络模型的损失函数。为减少网络计算量,提高训练速度,在预处理中将滚动轴承的振动加速度时域信号通过快速傅里叶变换(FFT)得到的频谱结果作为网络的输入,且仅依靠正常数据完成模型的训练。最后,在带机匣的航空发动机转子试验器和某型真实的航空发动机上分别进行了试验验证。结果表明,所提方法能够准确的实现对低转速滚动轴承故障的检测,且检测精度分别为93%和100%,充分表明该方法具有很好的异常检测能力及应用价值。
基于概率稀疏自注意力的航空发动机剩余寿命预测
作者:
王欣
黄佳琪
许雅玺
来源:
科学技术与工程
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
概率稀疏自注意力
剩余寿命预测
描述:
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。
基于深度学习的航空发动机剩余使用寿命预测方法研究
作者:
曹锦山.
来源:
重庆交通大学
年份:
2024
文献类型 :
学位论文
关键词:
航空发动机
Transformer
深度学习
剩余使用寿命
多头自注意力机制
描述:
基于深度学习的航空发动机剩余使用寿命预测方法研究
基于DETR的高清航空图像目标检测算法研究
作者:
许伟伟.
来源:
电子科技大学
年份:
2024
文献类型 :
学位论文
关键词:
DETR
Transformer
知识蒸馏
滑动窗口
航空目标检测
描述:
基于DETR的高清航空图像目标检测算法研究
基于深度学习的航空发动机剩余使用寿命预测方法研究
作者:
曹锦山.
来源:
重庆交通大学
年份:
2024
文献类型 :
学位论文
关键词:
航空发动机
Transformer
深度学习
剩余使用寿命
多头自注意力机制
描述:
基于深度学习的航空发动机剩余使用寿命预测方法研究
基于DETR的高清航空图像目标检测算法研究
作者:
许伟伟.
来源:
电子科技大学
年份:
2024
文献类型 :
学位论文
关键词:
DETR
Transformer
知识蒸馏
滑动窗口
航空目标检测
描述:
基于DETR的高清航空图像目标检测算法研究
<
1
2
>
Rss订阅
订阅地址: