首页>
根据【关键词:航空发动机轴承,支持向量机,主成分分析,轴承诊断,粒子群算法】搜索到相关结果 6 条
-
航空发动机轴承故障结构化贝叶斯稀疏表示
-
作者:
张烁
刘治汶
来源:
航空学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机轴承
故障诊断
时频冲击字典
灰狼优化算法
结构化贝叶斯正交匹配追踪
-
描述:
航空发动机轴承振动信号中与故障关联的瞬时冲击成分在时频变换域上不仅具有稀疏性,还具有某些结构特征,而传统的以正交匹配追踪(OMP)算法为代表的贪婪类及其改进重构方法,通常仅利用了信号整体的稀疏性,未
-
航空发动机轴承故障结构化贝叶斯稀疏表示
-
作者:
张烁
刘治汶
来源:
航空学报
年份:
2022
文献类型 :
期刊
关键词:
航空发动机轴承
故障诊断
时频冲击字典
灰狼优化算法
结构化贝叶斯正交匹配追踪
-
描述:
航空发动机轴承振动信号中与故障关联的瞬时冲击成分在时频变换域上不仅具有稀疏性,还具有某些结构特征,而传统的以正交匹配追踪(OMP)算法为代表的贪婪类及其改进重构方法,通常仅利用了信号整体的稀疏性,未
-
基于IPSO-Elman神经网络的飞机客舱能耗预测
-
作者:
林家泉
孙凤山
李亚冲
庄子波
来源:
航空学报
年份:
2020
文献类型 :
期刊
关键词:
飞机地面空调
能耗预测
飞机客舱
粒子群算法
Elman神经网络
-
描述:
为了提高飞机客舱使用地面空调制冷时,客舱能耗的预测精度,提出了一种IPSO(Improved Particle Swarm Optimization)优化Elman神经网络的飞机客舱能耗预测模型。依据对算法中惯性权重与学习因子的收敛域分析,得出了二者合理的取值范围,将粒子到全局最优位置间距离与参数的取值范围相结合,构造了惯性权重与学习因子的动态调节函数,对其进行非线性的动态调节,并引入了变异因子,提出了一种跳出局部最优的策略,防止PSO陷入局部最优。将IPSO-Elman应用于Boeing738飞机客舱能耗预测中,与PSO-Elman、Elman算法进行性能比较,仿真结果表明基于IPSO-Elman的客舱能耗预测模型在预测精度和收敛速度方面均有一定的提升,该研究结果为飞机客舱能耗预测模型的建立提供了理论依据,对飞机地面空调的节能与机场电能合理调配提供了支持。
-
基于IPSO-Elman神经网络的飞机客舱能耗预测
-
作者:
林家泉
孙凤山
李亚冲
庄子波
来源:
航空学报
年份:
2020
文献类型 :
期刊
关键词:
飞机地面空调
能耗预测
飞机客舱
粒子群算法
Elman神经网络
-
描述:
为了提高飞机客舱使用地面空调制冷时,客舱能耗的预测精度,提出了一种IPSO(Improved Particle Swarm Optimization)优化Elman神经网络的飞机客舱能耗预测模型。依据对算法中惯性权重与学习因子的收敛域分析,得出了二者合理的取值范围,将粒子到全局最优位置间距离与参数的取值范围相结合,构造了惯性权重与学习因子的动态调节函数,对其进行非线性的动态调节,并引入了变异因子,提出了一种跳出局部最优的策略,防止PSO陷入局部最优。将IPSO-Elman应用于Boeing738飞机客舱能耗预测中,与PSO-Elman、Elman算法进行性能比较,仿真结果表明基于IPSO-Elman的客舱能耗预测模型在预测精度和收敛速度方面均有一定的提升,该研究结果为飞机客舱能耗预测模型的建立提供了理论依据,对飞机地面空调的节能与机场电能合理调配提供了支持。
-
基于IPSO-Elman神经网络的飞机客舱能耗预测
-
作者:
林家泉
孙凤山
李亚冲
庄子波
来源:
航空学报
年份:
2020
文献类型 :
期刊
关键词:
飞机地面空调
能耗预测
飞机客舱
粒子群算法
Elman神经网络
-
描述:
为了提高飞机客舱使用地面空调制冷时,客舱能耗的预测精度,提出了一种IPSO(Improved Particle Swarm Optimization)优化Elman神经网络的飞机客舱能耗预测模型。依据对算法中惯性权重与学习因子的收敛域分析,得出了二者合理的取值范围,将粒子到全局最优位置间距离与参数的取值范围相结合,构造了惯性权重与学习因子的动态调节函数,对其进行非线性的动态调节,并引入了变异因子,提出了一种跳出局部最优的策略,防止PSO陷入局部最优。将IPSO-Elman应用于Boeing738飞机客舱能耗预测中,与PSO-Elman、Elman算法进行性能比较,仿真结果表明基于IPSO-Elman的客舱能耗预测模型在预测精度和收敛速度方面均有一定的提升,该研究结果为飞机客舱能耗预测模型的建立提供了理论依据,对飞机地面空调的节能与机场电能合理调配提供了支持。
-
基于IPSO-Elman神经网络的飞机客舱能耗预测
-
作者:
林家泉
孙凤山
李亚冲
庄子波
来源:
航空学报
年份:
2020
文献类型 :
期刊
关键词:
飞机地面空调
能耗预测
飞机客舱
粒子群算法
Elman神经网络
-
描述:
为了提高飞机客舱使用地面空调制冷时,客舱能耗的预测精度,提出了一种IPSO(Improved Particle Swarm Optimization)优化Elman神经网络的飞机客舱能耗预测模型。依据对算法中惯性权重与学习因子的收敛域分析,得出了二者合理的取值范围,将粒子到全局最优位置间距离与参数的取值范围相结合,构造了惯性权重与学习因子的动态调节函数,对其进行非线性的动态调节,并引入了变异因子,提出了一种跳出局部最优的策略,防止PSO陷入局部最优。将IPSO-Elman应用于Boeing738飞机客舱能耗预测中,与PSO-Elman、Elman算法进行性能比较,仿真结果表明基于IPSO-Elman的客舱能耗预测模型在预测精度和收敛速度方面均有一定的提升,该研究结果为飞机客舱能耗预测模型的建立提供了理论依据,对飞机地面空调的节能与机场电能合理调配提供了支持。