首页>
根据【关键词:组合原因分析,维修质量管理,贝叶斯网络,人工神经网络,深度学习,随机集理论】搜索到相关结果 42 条
-
基于贝叶斯网络的电动垂直起降航空器运行风险研究
-
作者:
张晓全
马晗
来源:
科学技术与工程
年份:
2022
文献类型 :
期刊
关键词:
风险分析
贝叶斯网络
电动垂直起降(eVTOL)航空器
运行场景
模糊集理论
-
描述:
为迎接电动垂直起降航空器的到来,降低平均无故障时间,对电动垂直起降(electric vertical takeoff and landing, eVTOL)航空器的一般运行场景和系统构成做出了分析,并从人为因素、设备因素、环境因素和其他因素中提取了可能的失效诱因;构建了失控坠地和空中碰撞的贝叶斯网络,并依据所建网络和通过不同专家得到的概率值计算控制失效情况下失控坠地和中间事件发生概率,然后进行反向推断,推演事故发生主要诱因。结果表明:电动垂直起降航空器正常运行发生事故的概率为9.648×10-7,其中,控制失效、飞控系统断电/故障是事故主要诱因,计算结果可为电动垂直起降航空器安全运行防控提供依据。
-
基于AHP-BN的航空安全风险评估与诊断研究
-
作者:
谷倩倩
来源:
滨州学院学报
年份:
2022
文献类型 :
期刊
关键词:
贝叶斯网络
层次分析法
SHELL模型
风险评估
航空安全
-
描述:
鉴于影响航空安全的因素众多且大部分因素与工作中的人相关联,建立以SHELL模型为架构的航空安全影响因素分析模型,搭建航空安全风险评估指标体系。采用层次分析法计算各评估指标的重要度并筛选出重要指标,将重要指标作为节点建立基于贝叶斯网络的航空安全风险评估与诊断模型,分析出不同影响因素作用下航空不安全事件发生的概率。利用贝叶斯网络模型的诊断功能得到影响航空不安全事件发生的关键因素,并基于此提出预防措施,从而保证航空安全的持续性。
-
基于CenterNet的航空遥感图像目标检测
-
作者:
杨曦中
高冠鸿
熊智
张玲
来源:
航空电子技术
年份:
2022
文献类型 :
期刊
关键词:
目标检测
深度学习
神经网络
CenterNet
-
描述:
为实现高精度的航空图像目标检测,将Anchor free的目标检测算法CenterNet应用到检测中,同时使用Resnet50主干网络,并引入CIoU损失替代原有损失函数对网络模型做出了改进。改进后的算法在RSOD与DIOR数据集上进行测试,结果显示在保证网络轻量化的前提下检测精度有明显的提高,证明了算法在航空目标检测方面的可行性与准确性。
-
基于深度学习的航空器场面轨迹预测
-
作者:
李雪
何元清
胡耀
来源:
现代计算机
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
深度学习
轨迹预测
-
描述:
轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理,设定网络模型参数,构建轨迹预测模型,提出了一种基于深度学习的航空器场面滑行轨迹预测方法。结合场面航空器运动状态的变化,改进长短期记忆网络的隐藏层结构,实现对航空器场面轨迹的中期预测。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
基于Transformer的多特征融合的航空发动机剩余使用寿命预测
-
作者:
马依琳
陶慧玲
董启文
王晔
来源:
华东师范大学学报(自然科学版)
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
剩余使用寿命
-
描述:
发动机作为飞机的核心部件,对飞机运行起着至关重要的作用.对航空发动机做准确的剩余使用寿命预测,能够提前进行维护诊断,预防重大事故的发生,节约维护成本.针对现有的方法缺乏对不同时间步长的考虑以及不同传感器和操作条件之间关系的研究,提出了一种基于Transformer的多编码器特征输出融合的航空发动机剩余使用寿命预测方法.该方法选取两个不同时间长度的输入数据,使用排列熵对传感器之间的关系进行分析,并将操作条件数据独立提取特征.在广泛使用的航空发动机CMAPSS(Commercial Modular Aero-Propulsion System Simulation)数据集上进行了实验验证.实验结果表明,该方法优于现有的先进预测方法,可有效提高预测精度.
-
旋转式航空重力梯度仪动态测量误差传递模型与事后误差补偿
-
作者:
程一
李桐林
周帅
来源:
地球物理学报
年份:
2022
文献类型 :
期刊
关键词:
误差传递模型
事后误差补偿
深度学习
重力梯度仪
-
描述:
航空重力梯度测量技术可快速、高效地完成面积性重力梯度数据采集工作,在矿产资源勘查、军事目标探测等诸多科学领域具有广泛的应用.而航空重力梯度动态测量误差补偿方法是重力梯度动态测量数据处理中的一项重要工作.本文首先对旋转式重力梯度仪误差传递机理进行了定量分析,在综合考虑重力梯度仪系统非理想因素相互作用的情况下,建立了多种非理想因素与外部动态运动参数相耦合的误差传递模型;其次,提出了基于数据驱动的深度学习方法对航空动态测量误差进行补偿,并基于误差传递传递模型建立仿真数据样本集验证了方法的有效性;最后,通过航空重力梯度仪实测数据的处理和应用,验证了本文建立事后误差补偿方法的泛化性,进一步验证了本文建立方法在航空动态测量噪声抑制中的实用性,为航空重力梯度动态测量数据的处理提供技术储备.
-
基于深度学习的航空器场面轨迹预测
-
作者:
李雪
何元清
胡耀
来源:
现代计算机
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
深度学习
轨迹预测
-
描述:
轨迹预测研究是安全高效控制场面滑行的重要基础,在路由规划,风险预警,航班次序,重要节点的时间安排等都能起到重要作用。利用深度学习中循环神经网络的长期记忆性特点,对航空器场面历史数据进行分析和预处理,设定网络模型参数,构建轨迹预测模型,提出了一种基于深度学习的航空器场面滑行轨迹预测方法。结合场面航空器运动状态的变化,改进长短期记忆网络的隐藏层结构,实现对航空器场面轨迹的中期预测。
-
基于注意力机制的航空图像旋转框目标检测
-
作者:
常洪彬
李文举
李文辉
来源:
吉林大学学报(理学版)
年份:
2022
文献类型 :
期刊
关键词:
航空图像
注意力机制
目标检测
深度学习
-
描述:
针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像目标检测模型.该模型首先采用RetinaNet作为基线模型,在原有检测器结构的基础上,增加额外的角度参数以适应旋转框目标检测;然后提出一个新的通道语义提取注意力模块(CSE),用于捕获全局语义信息和通道关系,并预测粗糙包围盒与分类分数;最后采用特征对齐和改进的Fast R-CNN检测头进行精细化处理,进一步提升检测精度,得到最后的分类和回归结果.实验结果表明,该方法在公开航空遥感数据集DOTA上的检测精度达到77.71%,优于其他先进的旋转框目标检测方法.