首页>
根据【关键词:特征提取,实例分割,卷积注意力模块,基于掩模区域的卷积神经网络,深度学习,动态蛇形卷积,航空发动机保险丝】搜索到相关结果 3 条
-
考虑不确定性的航空发动机燃油计量组件典型故障仿真与特征分析
-
作者:
朱赟
徐瑀童
唐皓
朱昕昀
来源:
科学技术与工程
年份:
2023
文献类型 :
期刊
关键词:
燃油计量组件
不确定分析
特征提取
AMESim
-
描述:
燃油计量组件(fuel metering unit, FMU)是航空发动机的核心部件之一,其工作性能的优劣直接影响到发动机整体的安全性和可靠性。因此开展燃油计量组件的仿真建模和故障诊断研究,是航空发动机健康管理技术的重要内容,具有重大研究价值。以某型燃油计量组件为研究对象,基于AMESim建立其仿真模型,考虑系统工作过程中出现的不确定因素,使用基于概率的方法度量系统不确定性,进行不确定性传播。提取计量活门滑阀位移和伺服阀控制电流,建立速度增益曲线表征组件整体工作性能,针对故障特征的不确定性,基于受试者操作特征(receiver operating characteristic, ROC)曲线提出了故障特征评估方法,定量评价故障特征对于故障诊断的潜力。
-
基于Inception-BiLSTM的航空电缆电弧故障检测
-
作者:
刘岱
李晨辉
来源:
科学技术与工程
年份:
2025
文献类型 :
期刊
关键词:
航空电缆电弧故障
特征提取
Inception模块
双向长短期记忆网络
-
描述:
基于Inception-BiLSTM的航空电缆电弧故障检测
-
基于概率稀疏自注意力的航空发动机剩余寿命预测
-
作者:
王欣
黄佳琪
许雅玺
来源:
科学技术与工程
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
Transformer
深度学习
概率稀疏自注意力
剩余寿命预测
-
描述:
航空发动机剩余寿命预测对其健康管理具有重要意义,针对长序列、多维度的航空发动机监测参数,提出一种基于概率稀疏自注意力(ProbSparse Self-Attention)的Transformer模型以实现航空发动机剩余寿命的准确预测。用ProbSparse Self-Attention取代原始Transformer中的常规自注意力机制,使得模型更关注时间序列中重要的时间节点,大幅缩减时间维度,减小了时间和空间复杂度;通过注意力层整合后的信息,进一步通过前馈神经网络层和卷积层,提取传感器的空间特征,编码层之间通过扩张因果卷积相连接,扩大了感受野,提高了模型对长序列信息的捕获能力。在新公开的N-CMAPSS数据集上验证算法,实验结果表明,相比于实验中的对比模型,所提模型的RMSE和Score值均有提升,推理速度也优于其他模型。