关键词
基于新型深度神经网络的民机表面缺陷识别
作者: 张德银   陈从翰   黄选红   徐志强   来源: 计算技术与自动化 年份: 2020 文献类型 : 期刊 关键词: 深度神经网络   表面缺陷识别   Inception   Net   残差   民航飞机  
描述: 为解决机务人员依靠经验来对民航飞机的表面缺陷进行识别时易发生误判的问题,开发了一种用于民机表面的缺陷识别的结合Inception-net和残差模块的新型深度神经网络。首先,通过对各机场的在修飞机表面
基于新型深度神经网络的民机表面缺陷识别
作者: 张德银   陈从翰   黄选红   徐志强   来源: 计算技术与自动化 年份: 2020 文献类型 : 期刊 关键词: 深度神经网络   表面缺陷识别   Inception   Net   残差   民航飞机  
描述: 为解决机务人员依靠经验来对民航飞机的表面缺陷进行识别时易发生误判的问题,开发了一种用于民机表面的缺陷识别的结合Inception-net和残差模块的新型深度神经网络。首先,通过对各机场的在修飞机表面
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
作者: 张善文     邵彧     李萍     令伟锋   来源: 弹箭与制导学报 年份: 2024 文献类型 : 期刊 关键词: Transformer   Net与Transformer   航空遥感图像飞机检测   多尺度U   Net  
描述: 航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer (MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
作者: 张善文     邵彧     李萍     令伟锋   来源: 弹箭与制导学报 年份: 2024 文献类型 : 期刊 关键词: Transformer   Net与Transformer   航空遥感图像飞机检测   多尺度U   Net  
描述: 航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer (MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。
不同结构深度神经网络的时间域航空电磁数据成像性能分析
作者: 李金峰   刘云鹤   来源: 世界地质 年份: 2021 文献类型 : 期刊 关键词: 电磁数据   地球物理   成像   深度神经网络  
描述: 时间域航空电磁系统采样密集,数据量大,所以在该领域较为实用的数据处理方法主要为一维反演和电阻率成像法。笔者从成像问题出发,建立了庞大的数据-模型训练集,研究并分析了不同结构的神经网络的成像精度。通过对比分析测试结果,获得了在一定条件下适用于航空电磁成像的最优网络模型结构,包含其神经元个数和层数等信息。本文采用早停法训练神经网络,压制数据中噪声对成像结果的影响。
DNN加速器技术发展及航空计算系统应用展望
作者: 赵一煊   刘飞阳   高晗   王建生   来源: 航空计算技术 年份: 2022 文献类型 : 期刊 关键词: 智能计算   深度神经网络   航空电子系统   硬件加速器  
描述: 新一代航空计算系统将以高性能智能数据处理为核心,能够支撑智能化的图像/雷达目标识别、大数据分析、指控决策、故障自诊断等多种应用场景。深度神经网络硬件加速器是面向人工智能领域专用的硬件加速平台,能够
不同结构深度神经网络的时间域航空电磁数据成像性能分析
作者: 李金峰   刘云鹤   来源: 世界地质 年份: 2021 文献类型 : 期刊 关键词: 电磁数据   地球物理   成像   深度神经网络  
描述: 时间域航空电磁系统采样密集,数据量大,所以在该领域较为实用的数据处理方法主要为一维反演和电阻率成像法。笔者从成像问题出发,建立了庞大的数据-模型训练集,研究并分析了不同结构的神经网络的成像精度。通过对比分析测试结果,获得了在一定条件下适用于航空电磁成像的最优网络模型结构,包含其神经元个数和层数等信息。本文采用早停法训练神经网络,压制数据中噪声对成像结果的影响。
DNN加速器技术发展及航空计算系统应用展望
作者: 赵一煊   刘飞阳   高晗   王建生   来源: 航空计算技术 年份: 2022 文献类型 : 期刊 关键词: 智能计算   深度神经网络   航空电子系统   硬件加速器  
描述: 新一代航空计算系统将以高性能智能数据处理为核心,能够支撑智能化的图像/雷达目标识别、大数据分析、指控决策、故障自诊断等多种应用场景。深度神经网络硬件加速器是面向人工智能领域专用的硬件加速平台,能够
不同结构深度神经网络的时间域航空电磁数据成像性能分析
作者: 李金峰   刘云鹤   来源: 世界地质 年份: 2020 文献类型 : 期刊 关键词: 电磁数据   地球物理   成像   深度神经网络  
描述: 时间域航空电磁系统采样密集,数据量大,所以在该领域较为实用的数据处理方法主要为一维反演和电阻率成像法。笔者从成像问题出发,建立了庞大的数据-模型训练集,研究并分析了不同结构的神经网络的成像精度。通过对比分析测试结果,获得了在一定条件下适用于航空电磁成像的最优网络模型结构,包含其神经元个数和层数等信息。本文采用早停法训练神经网络,压制数据中噪声对成像结果的影响。
不同结构深度神经网络的时间域航空电磁数据成像性能分析
作者: 李金峰   刘云鹤   来源: 世界地质 年份: 2020 文献类型 : 期刊 关键词: 电磁数据   地球物理   成像   深度神经网络  
描述: 时间域航空电磁系统采样密集,数据量大,所以在该领域较为实用的数据处理方法主要为一维反演和电阻率成像法。笔者从成像问题出发,建立了庞大的数据-模型训练集,研究并分析了不同结构的神经网络的成像精度。通过对比分析测试结果,获得了在一定条件下适用于航空电磁成像的最优网络模型结构,包含其神经元个数和层数等信息。本文采用早停法训练神经网络,压制数据中噪声对成像结果的影响。
< 1 2 ... 9 10 11
Rss订阅