首页>
根据【关键词:深度学习,空间调制信号,航空电子系统,信号处理,干扰抑制】搜索到相关结果 689 条
-
航空电子综合系统的容错与故障诊断
-
作者:
王南
来源:
上海交通大学
年份:
2016
文献类型 :
学位论文
关键词:
故障诊断
重构
组合优化
可靠性分析
航空电子系统
容错
-
描述:
保证和提高系统的可靠性显得越来越重要,研究和开发航空电子综合系统故障容错与重构技术具有特别重要的意义.该文分析了综合航空电子系统的容错与故障诊断,航空电子系统的分布式结构,及机载电子设备的软硬件容错的方法.并着重按照航空电子系统中芯片集中单元类的分布?
-
面向第四代战斗机航空电子系统应用的分布式计算机系统研究与实现
-
作者:
王卫东
来源:
西北工业大学
年份:
2016
文献类型 :
学位论文
关键词:
第四代战斗机
VLSI芯片
PI
分布式系统
BUS控制器
航空电子系统
-
描述:
该文在分析了第四代战斗机航空电子系统的需求的基础上,借鉴国外机载计算机的成功经验,结合中国国情,提出了一种分布式计算机体系结构.该文研究的第二个问题是PI-BUS控制器设计与实现.该文研究的第三个问题是系统测试技术研究与实现.该文研究的第四个问题是全局存储器
-
SAR图像飞机目标检测识别进展
-
作者:
郭倩
王海鹏
徐丰
来源:
雷达学报
年份:
2020
文献类型 :
期刊
关键词:
飞机识别
合成孔径雷达
散射信息
深度学习
飞机检测
-
描述:
的散射机制及面临的技术难点,阐述了SAR飞机目标检测识别的系统流程、技术路线和关键科学问题,对基于传统与基于深度学习两个方面的飞机目标检测识别的研究进展进行了归纳总结,并讨论了各类方法的特点及存在
-
基于深度学习的离场航空器滑行时间预测(英文)
-
作者:
李楠
焦庆宇
朱新华
王少聪
来源:
Transactions of Nanjing University of Aeronautics and Astronautics
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
场面运行
滑行时间
深度学习
航空运输
-
描述:
起飞排序队列和给出准确的撤轮挡时间具有重要的作用。本文提出一种基于时间-空间-环境数据的深度学习模型(Spatio-temporal-environment deep learning model
-
光学遥感图像中的飞机目标检测技术研究综述
-
作者:
祝文韬
谢宝蓉
王琰
沈霁
朱浩文
来源:
计算机科学
年份:
2021
文献类型 :
期刊
关键词:
机器学习
光学遥感图像
深度学习
飞机目标检测
模板匹配
-
描述:
飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
-
光学遥感图像中的飞机目标检测技术研究综述
-
作者:
祝文韬
谢宝蓉
王琰
沈霁
朱浩文
来源:
计算机科学
年份:
2021
文献类型 :
期刊
关键词:
机器学习
光学遥感图像
深度学习
飞机目标检测
模板匹配
-
描述:
飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
一种用于预测航空遥感影像光谱信息的深度学习方法
-
作者:
郝明达
普运伟
周家厚
杨洋
陈如俊
来源:
遥感信息
年份:
2022
文献类型 :
期刊
关键词:
高光谱遥感重建
深度学习
密集卷积神经网络
光谱超分辨率
自适应注意力机制
-
描述:
为从航空RGB遥感影像中预测高光谱影像中有用的地物属性信息,提高航空RGB遥感影像光谱的分辨率,提出一种轻量型的深度学习网络模型。所提模型组合了密集卷积神经网络架构和自适应注意力机制的优点,构建
<
1
2
3
...
32
33
34
...
67
68
69
>