首页>
根据【关键词:注意力机制,航空轴承,卷积神经网络,深度学习,状态识别】搜索到相关结果 2 条
-
基于统一网络架构的多模态航空影像质量评价研究
-
作者:
闫婧
武林伟
刘伟杰
韩如雪
来源:
现代电子技术
年份:
2023
文献类型 :
期刊
关键词:
无参考模型
特征提取
卷积神经网络
特征融合
多模态数据
深度学习
网络结构
影像质量评价
-
描述:
高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。
-
基于统一网络架构的多模态航空影像质量评价研究
-
作者:
闫婧
武林伟
刘伟杰
韩如雪
来源:
现代电子技术
年份:
2023
文献类型 :
期刊
关键词:
无参考模型
特征提取
卷积神经网络
特征融合
多模态数据
深度学习
网络结构
影像质量评价
-
描述:
高质量无人机航空影像是目标检测、分析、识别的重要前提条件,但各类传感器成像机理不同,质量影响因素多样,往往需要根据不同模态数据的特性设计不同的网络模型,从而大大增加了质量评价算法在无人机上的应用难度。针对这一问题,提出一种基于统一网络框架的无参考多模态影像质量评价模型,通过自适应地学习图像块内部的局部特征与图像块之间的相互关系,完成空间维度上的全局信息融合和时间维度上的时序信息融合,实现对多种模态影像数据的质量评估,进而快速有效地监测筛选采集数据的质量,提高有效数据采集效率。实验结果表明,该方法在多种模态的影像数据质量评价上具备泛用性和有效性。