关键词
基于优化混合模型的航空发动机剩余寿命预测方法
作者: 刘月峰   张小燕   郭威   边浩东   何滢婕   来源: 计算机应用 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余使用寿命   双向长短期记忆网络  
描述: 的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入
基于改进的SENet航空发动机振动预测
作者: 夏存江   詹于游   来源: 航空动力学报 年份: 2022 文献类型 : 期刊 关键词: 数据驱动   注意力机制   卷积神经网络   多参数融合   振动预测  
描述: 为实时监测和预警航空发动机振动状态,基于气路及振动参数,提出一种使用改进的SENet(squeeze-and-excitation network)模型,对航空发动机近未来的振动进行预测。该研究相比以往采用的实验室模拟数据和仿真数据,使用了真实的QAR(quick access recorder)数据并进行随机采样,以求更能表征发动机振动和工作参数之间的关系。同时,不仅使用其他振动信号进行验证,还在其他型号的发动机上进行测试。结果表明:针对航空发动机的振动进行预测是可行的,SENet模型可以有效并实时追踪振动的突变和波动。此外,该方法对于其他振动信号和不同类型的发动机具有一定的适用性。而且相较于以往采用的其他经典的深度模型,SENet模型在振动的预测中能得到更小的误差。实验证明,相较于以往只使用振动这个单参数进行预测,并行使用与振动相关的多参数融合进行研究更能提高预测的准确性。
YOLOv4-tiny及其改进算法在航空机务维修照相管理中的应用
作者: 张锐丽   张琦   高万春   李江龙   来源: 兵工自动化 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   tiny   目标检测   YOLOv4   照相管理  
描述: 注意力机制模块以改进YOLOv4-tiny。测试结果表明:准确率(precision,P)相较原YOLOv4-tiny提高了5%,召回率(recall,R)提高约8%,平均准确率均值(mean
基于注意力与LSTM的航空发动机剩余寿命预测
作者: 王欣   孟天宇   周俊曦   来源: 科学技术与工程 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   长短期记忆网络   航空发动机   剩余寿命预测   预测性维护  
描述: C-MAPSS涡扇发动机仿真数据集进行实验,与未加注意力机制的长短期记忆网络等多种模型进行对比实验。实验结果表明,提到的Attention-LSTM模型的均方根误差相比较于未引入注意力机制的长短期记忆网络降低了17.8%,拟合度提升了3.2%,各项评估指标均也优于其他对比模型。
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
作者: 袁烨   黄虹   程骋   虞文武   丁汉   来源: 中国科学:技术科学 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   生成对抗网络   特征提取   航空航天   剩余寿命预测  
描述: 涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
作者: 袁烨   黄虹   程骋   虞文武   丁汉   来源: 中国科学:技术科学 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   生成对抗网络   特征提取   航空航天   剩余寿命预测  
描述: 涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样
基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测
作者: 张加劲   来源: 电子测量与仪器学报 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余寿命   双向长短期记忆网络  
描述: ,提出了一种基于注意力机制的卷积神经网络和双向长短期网络融合模型。首先,采用卷积神经网络提取特征和双向长短期记忆网络获取特征中的长短期依赖关系;其次,使用注意力机制来突出特征中的重要部分,提高模型预测
基于优化混合模型的航空发动机剩余寿命预测方法
作者: 刘月峰   张小燕   郭威   边浩东   何滢婕   来源: 计算机应用 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余使用寿命   双向长短期记忆网络  
描述: 的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入
基于深度学习的航空器场面轨迹预测研究
作者: 李雪   来源: 中国民用航空飞行学院 年份: 2022 文献类型 : 学位论文 关键词: 注意力机制   LSTM   机场场面轨迹预测   深度学习   PSO  
描述: 基于深度学习的航空器场面轨迹预测研究
基于深度学习的航空器场面轨迹预测研究
作者: 李雪   来源: 中国民用航空飞行学院 年份: 2022 文献类型 : 学位论文 关键词: 注意力机制   LSTM   机场场面轨迹预测   深度学习   PSO  
描述: 基于深度学习的航空器场面轨迹预测研究
< 1 2 3 4
Rss订阅