按文献类别分组
按栏目分组
按年份分组
关键词
基于STR的情感挖掘方法研究——以航空公司质量评价为例
作者: 史伟   来源: 湖州师范学院学报 年份: 2017 文献类型 : 期刊 关键词: 数据科学   情感主题识别(STR)   商务智能   情感挖掘  
描述: 情感挖掘现在常用来分析文本,以确定语料是正面的或是负面的。最近,情感挖掘已经扩展到用于解决更深入性的问题,诸如辨别主观命题中的客观成分,确定发表在微博、论坛和新闻中的文本数据集的来源和主题等。企业可以利用观点的极性和情感主题的识别,以获得对情感的驱动者和影响范围更深入的理解。这些信息可以帮助企业提高竞争智能,改进客户服务,获得更好的品牌形象,并且增强竞争力。本文提出了一种新的情感挖掘方法,它可用于检测文本的情感极性和情感主题。该方法包括一个情感主题的识别模型(STR),这个模型是在带有VEM算法的相关主题模型(CTM)的基础上构建的。然后基于微博上航空公司的数据,验证了本文方法的适用性和高效性。最后,基于本文方法输出的结果,计算了三大航空公司的航空质量等级,从而检测了它们的声誉。
< 1
Rss订阅