按文献类别分组
关键词
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
作者: 王思雨   高鑫   孙皓   郑歆慰   孙显   来源: 雷达学报 年份: 2019 文献类型 : 期刊 关键词: 合成孔径雷达(SAR)   数据增强   视觉显著性   飞机检测   卷积神经网络(CNN)  
描述: 传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
基于特征融合与软判决的遥感图像飞机检测
作者: 朱明明   许悦雷   马时平   李帅   马红强   来源: 光学学报 年份: 2019 文献类型 : 期刊 关键词: 区域卷积神经网络   特征融合   图像处理   软判决   飞机检测  
描述: 提出了一种特征融合结合软判决的飞机检测方法。以区域卷积神经网络为基本框架,依次采用L2范数归一化、特征连接、尺度缩放和特征降维来融合多层特征。为了降低网络在目标高度重叠时的漏检率,引入软判决来改进传统的非极大值抑制方法。实验结果表明,所提方法能够准确快速地检测到飞机,得到检测率为94.25%、虚警率为5.5%、平均运行时间为0.16 s的实验结果。与现有的其他检测方法相比,所提方法的各项指标均得到显著提升。
基于深度学习的机场场面飞机检测跟踪系统设计与实现
作者: 郭进祥   来源: 宁夏大学 年份: 2019 文献类型 : 学位论文 关键词: ADS   B   飞机跟踪   机场场面   深度学习   飞机检测  
描述: 基于深度学习的机场场面飞机检测跟踪系统设计与实现
< 1
Rss订阅