关键词
基于航空图像的目标检测算法Trans_YOLOv5
作者: 文青     伍欣     敖斌     李宽     殷建平   来源: 计算机技术与发展 年份: 2024 文献类型 : 期刊 关键词: 航空图像   Transformer   YOLOv5   圆形平滑标签   小目标检测   Swin  
描述: 与自然图像的检测算法相比较,航空图像的检测存在目标角度随机、目标尺度变化剧烈、小目标密集、图像背景复杂等问题。针对这一系列难题,提出适用于航空图像检测的Trans-YOLOv5算法。修改YOLOv5算法中数据预处理模块以及后处理方法,增加一个目标角度标签的处理,使其适用于目标角度随机的航空图像。针对后续出现的边界问题,引入CSL(Circular Smooth Label,圆形平滑标签)将标签角度回归问题转换为分类问题,提高角度标签检测的精度。针对航空图像小目标检测问题,将Swin Transformer集成于YOLOv5框架中,提升模型对小目标的检测效果,并配合注意力机制模块,提高全局表征能力,使网络模型更加关注于待检测的目标对象。在DOTAv2.0航空图像数据集上的实验结果验证了所提方法的有效性,检测结果达到60.98%mAP,与原YOLOv5算法检测结果相比提高10.85百分点,与官网公布的竞赛最佳结果相比提高2.01百分点。
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于YOLOv5的航空图像目标检测方法研究
作者: 文青.   来源: 东莞理工学院 年份: 2023 文献类型 : 学位论文 关键词: Circular   损失函数   注意力机制   Transformer   YOLOv5   Smooth   Label   Swin  
描述: 基于YOLOv5的航空图像目标检测方法研究
基于卷积神经网络的航空影像城市建筑物分割
作者: 刘蝶   来源: 地理空间信息 年份: 2020 文献类型 : 期刊 关键词: 建筑物   卷积神经网络   DenseNets   上采样  
描述: 对航空影像城市建筑物的分割方法进行了研究。基于DenseNets的密集连接结构,结合池化下采样和反卷积上采样方法,提出了一种新的图像语义分割方法。实验结果表明,新方法在模型参数大小、训练时间和平均交并比方面均优于Unet。预测图像更直观地体现了新方法的优势,城市建筑物分割得较为完整。
< 1 2 3 4 ... 27 28 29
Rss订阅