描述:
The Effect of the VR (Virtual Reality) Usability of Safety Training for Airline Flight Attendants on Perceived Learning, Safety Behaviors, and Satisfaction
描述:
The applications of artificial intelligence (AI) and natural language processing (NLP) have significantly empowered the safety and operational efficiency within the aviation sector for safer and more efficient operations. Airlines derive informed decisions to enhance operational efficiency and strategic planning through extensive contextual analysis of customer reviews and feedback from social media, such as Twitter and Facebook. However, this form of analytical endeavor is labor-intensive and time-consuming. Extensive studies have investigated NLP algorithms for sentiment analysis based on textual customer feedback, thereby underscoring the necessity for an in-depth investigation of transformer architecture-based NLP models. In this study, we conducted an exploration of the large language model BERT and three of its derivatives using an airline sentiment tweet dataset for downstream tasks. We further honed this fine-tuning by adjusting the hyperparameters, thus improving the model’s consistency and precision of outcomes. With RoBERTa distinctly emerging as the most precise and overall effective model in both the binary (96.97%) and tri-class (86.89%) sentiment classification tasks and persisting in outperforming others in the balanced dataset for tri-class sentiment classification, our results validate the BERT models’ application in analyzing airline industry customer sentiment. In addition, this study identifies the scope for improvement in future studies, such as investigating more systematic and balanced datasets, applying other large language models, and using novel fine-tuning approaches. Our study serves as a pivotal benchmark for future exploration in customer sentiment analysis, with implications that extend from the airline industry to broader transportation sectors, where customer feedback plays a crucial role.
描述:
The composition and structure of mountain vegetation are complex and changeable, and thus urgently require the integration of Object-Based Image Analysis (OBIA) and Deep Convolutional Neural Networks (DCNNs). However, while integration technology studies are continuing to increase, there have been few studies that have carried out the classification of mountain vegetation by combining OBIA and DCNNs, for it is difficult to obtain enough samples to trigger the potential of DCNNs for mountain vegetation type classification, especially using high-spatial-resolution remote sensing images. To address this issue, we propose a self-adaptive-filling method (SAF) to incorporate the OBIA method to improve the performance of DCNNs in mountain vegetation type classification using high-spatial-resolution aerial images. Using this method, SAF technology was employed to produce enough regular sample data for DCNNs by filling the irregular objects created by image segmenting using interior adaptive pixel blocks. Meanwhile, non-sample segmented image objects were shaped into different regular rectangular blocks via SAF. Then, the classification result was defined by voting combining the DCNN performance. Compared to traditional OBIA methods, SAF generates more samples for the DCNN and fully utilizes every single pixel of the DCNN input. We design experiments to compare them with traditional OBIA and semantic segmentation methods, such as U-net, MACU-net, and SegNeXt. The results show that our SAF-DCNN outperforms traditional OBIA in terms of accuracy and it is similar to the accuracy of the best performing method in semantic segmentation. However, it reduces the common pretzel phenomenon of semantic segmentation (black and white noise generated in classification). Overall, the SAF-based OBIA using DCNNs, which is proposed in this paper, is superior to other commonly used methods for vegetation classification in mountainous areas.
描述:
Aero medicine and first aid training is essential in preparing qualified cabin crew for in-flight medical emergencies. Nonetheless, it has always been regarded as a challenging aspect of cabin crew training. Cabin crew have been facing a more complex situation when conducting their duties onboard due to COVID-19. This study aims to explore the current status of aero medicine and first aid training in China. Using the snowballing technique, 17 participants were recruited for the in-depth semi-structured interview, including cabin crew from 9 airlines in China, first aid instructors from airline training centers, and lecturers from universities. Based on thematic analysis, four themes were extracted: required competencies, factors affecting first aid behaviors, course content and instructional strategies. Findings indicated that most airlines in China emphasized training their cabin crew in aero medicine and first aid. However, some conducted recurrent training once every two years, which was insufficient for skills and knowledge retention. Automated External Defibrillators (AED) were rarely equipped onboard. MedAire was not available for all airlines in China. The results pointed out the shortfalls on aero medicine and first aid aspect in China and can help improve the in-flight first aid facilities and optimize the training programs.