首页>
根据【关键词:Elman神经网络】搜索到相关结果 4 条
-
基于IPSO-Elman神经网络的飞机客舱能耗预测
-
作者:
林家泉
孙凤山
李亚冲
庄子波
来源:
航空学报
年份:
2020
文献类型 :
期刊
关键词:
飞机地面空调
能耗预测
飞机客舱
粒子群算法
Elman神经网络
-
描述:
为了提高飞机客舱使用地面空调制冷时,客舱能耗的预测精度,提出了一种IPSO(Improved Particle Swarm Optimization)优化Elman神经网络的飞机客舱能耗预测模型。依据对算法中惯性权重与学习因子的收敛域分析,得出了二者合理的取值范围,将粒子到全局最优位置间距离与参数的取值范围相结合,构造了惯性权重与学习因子的动态调节函数,对其进行非线性的动态调节,并引入了变异因子,提出了一种跳出局部最优的策略,防止PSO陷入局部最优。将IPSO-Elman应用于Boeing738飞机客舱能耗预测中,与PSO-Elman、Elman算法进行性能比较,仿真结果表明基于IPSO-Elman的客舱能耗预测模型在预测精度和收敛速度方面均有一定的提升,该研究结果为飞机客舱能耗预测模型的建立提供了理论依据,对飞机地面空调的节能与机场电能合理调配提供了支持。
-
基于IPSO-Elman神经网络的飞机客舱能耗预测
-
作者:
林家泉
孙凤山
李亚冲
庄子波
来源:
航空学报
年份:
2020
文献类型 :
期刊
关键词:
飞机地面空调
能耗预测
飞机客舱
粒子群算法
Elman神经网络
-
描述:
为了提高飞机客舱使用地面空调制冷时,客舱能耗的预测精度,提出了一种IPSO(Improved Particle Swarm Optimization)优化Elman神经网络的飞机客舱能耗预测模型。依据对算法中惯性权重与学习因子的收敛域分析,得出了二者合理的取值范围,将粒子到全局最优位置间距离与参数的取值范围相结合,构造了惯性权重与学习因子的动态调节函数,对其进行非线性的动态调节,并引入了变异因子,提出了一种跳出局部最优的策略,防止PSO陷入局部最优。将IPSO-Elman应用于Boeing738飞机客舱能耗预测中,与PSO-Elman、Elman算法进行性能比较,仿真结果表明基于IPSO-Elman的客舱能耗预测模型在预测精度和收敛速度方面均有一定的提升,该研究结果为飞机客舱能耗预测模型的建立提供了理论依据,对飞机地面空调的节能与机场电能合理调配提供了支持。
-
我国航空运动产业发展研究
-
作者:
汪丽
来源:
体育文化导刊
年份:
2020
文献类型 :
期刊
关键词:
飞机地面空调
能耗预测
飞机客舱
粒子群算法
Elman神经网络
-
描述:
通过实地调查法、专家访谈法等,对我国航空运动产业发展进行研究。当前我国航空运动产业发展迎来四大机遇:产业政策利好,经济水平保障,低空空域开放,行业体制改革;面临四大挑战:管理观念陈旧,基础设施匮乏,空域孤岛严重,社会认知度低。提出促进我国航空运动产业可持续发展的对策:深化体制改革,强化政策保障;加强人才和基础设施建设,夯实产业基础;做好赛事培育,打造自主品牌;注重市场营销,优化消费环境。
-
基于混沌PSO_Elman网络的航空发动机基线挖掘
-
作者:
瞿红春
林文斌
许旺山
郭龙飞
来源:
中国民航大学学报
年份:
2020
文献类型 :
期刊
关键词:
基线挖掘
航空发动机
粒子群算法
混沌
Elman神经网络
-
描述:
为提高发动机基线的拟合精度,提出经混沌粒子群优化的Elman神经网络模型。利用混沌算法改进粒子群算法(PSO)的位置公式,以解决局部最优问题。利用非线性递减函数改进PSO粒子的速度公式,以解决收敛精度较低的问题。将该模型用于基线拟合,并与传统的误差反向传播网络(BP)、Elman网络、支持向量机(SVM)等模型的拟合误差进行对比。结果表明:在训练数据、测试数据、训练次数均相同的情况下,混沌PSO_Elman模型的拟合精度高于其他传统模型;当训练样本减少时,其拟合精度依然高于传统模型,证明该模型具有更强的学习能力。