首页>
根据【关键词:飞机连接件,识别分类,机器视觉,图像处理】搜索到相关结果 64 条
-
基于深度学习的光学遥感图像飞机检测算法
-
作者:
董永峰
仉长涛
汪鹏
冯哲
来源:
激光与光电子学进展
年份:
2021
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
图像处理
目标检测
深度学习
Mask
RCNN算法
-
描述:
光学遥感图像目标检测一直都是遥感领域研究的热点之一,但现有的检测方法对背景复杂且尺寸较小的目标检测准确率不高。针对以上问题,提出了一种以Mask-RCNN为基础框架的目标检测方法。该算法以ResNet50为特征提取网络并在此基础之上利用特征重用技术来更好地提取目标的语义特征,且针对不同类型的飞机尺寸比例不固定等特点,设计了一组更加合适的候选框尺度集合。实验结果证明,该方法与以往常用的检测算法相比在小物体检测上拥有更高的检测精度。
-
基于无人机倾斜航空影像的树冠体积测算方法
-
作者:
于东海
冯仲科
来源:
农业工程学报
年份:
2019
文献类型 :
期刊
关键词:
树冠体积
图像处理
点云数据
倾斜摄影
无人机
单木参数提取
林业
-
描述:
树冠是结构复杂的不规则体,对树冠体积的精确测定一直是树木测量研究中的难点问题。该文以消费级多旋翼无人机对目标树木进行倾斜摄影获取的多角度航空影像为基础,通过空三加密处理生成目标树木的三维点云模型;用等高线法分割树冠点云,并确定树冠最优分割层数;用投影法对点云数据进行转化,并选取测算点计算树高和树冠任意横截面积;对分割后各规则体的体积进行累加获得树冠体积。结果表明:8棵目标树木的树高测算值相对误差为1.46%~4.10%,平均相对误差为2.88%;树冠体积测算值的相对误差为6.95%~12.39%,平均相对误差为9.42%;精度均可满足林业调查中对于树高和树冠体积测量结果的要求。利用无人机倾斜航空影像建立单木的三维点云模型并进行树冠体积测算的方法是可行且有效的,该方法可为研究单木树冠几何参数的提取提供参考。
-
基于深度学习的光学遥感图像飞机检测算法
-
作者:
董永峰
仉长涛
汪鹏
冯哲
来源:
激光与光电子学进展
年份:
2020
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
图像处理
目标检测
深度学习
Mask
RCNN算法
-
描述:
基于深度学习的光学遥感图像飞机检测算法
-
飞机目标分类的深度卷积神经网络设计优化
-
作者:
马俊成
赵红东
杨东旭
康晴
来源:
激光与光电子学进展
年份:
2020
文献类型 :
期刊
关键词:
图像分类
深度卷积神经网络
图像处理
高分类精度
飞机目标
归一化混淆矩阵
-
描述:
飞机目标分类的深度卷积神经网络设计优化