关键词
基于改进LSTM的航空发动机寿命预测方法研究
作者: 郭晓静   殷宇萱   贠玉晶   来源: 机床与液压 年份: 2022 文献类型 : 期刊 关键词: 长短期记忆网络   航空发动机   自动编码器   剩余寿命预测  
描述: 发动机剩余寿命(RUL)预测时,进行数据特征提取易导致预测效率低下。为解决此问题,提出一种改进的长短期记忆(LSTM)算法模型。通过引入深度稀疏自动编码器(SDAE)完成时序数据的处理与特征提取,优化LSTM模型,改善航空发动机RUL预测效果。利用SDAE进行特征提取,构建健康因子(HI)曲线;同时考虑运行工况、故障模式和传感器3个因素,并分别训练其权重。利用LSTM模型进行发动机剩余寿命预测。利用涡扇发动机退化过程数据集C-MAPSS开展实验,并与DNN、BiLSTM、单层LSTM进行对比分析。结果表明:与上述3种算法相比,改进后算法的均方根误差和评分函数值至少分别降低6.6%和39.1%;该方法寿命预测结果和实际寿命曲线拟合度高,验证了该方法的可行性和有效性。
基于Bi/GRU模型的航空发动机外部液压管路故障诊断研究
作者: 黄续芳   赵平   冯铃   张丽   来源: 机床与液压 年份: 2023 文献类型 : 期刊 关键词: 液压管路   故障诊断   深度学习   Bi/GRU模型  
描述: 针对航空液压管路故障信号含有噪声干扰导致管路故障识别困难的问题,提出一种基于双向门控循环单元(Bi/GRU)的深度学习液压管路故障诊断方法。由Bi/GRU神经网络模型综合液压管路数据进行时序特征提取,基于同一含噪声的液压管路振动实测数据,输入到Bi/GRU、GRU、RNN、SVM、BPNN等5种故障诊断模型中进行训练。最后,为了进一步展示Bi/GRU模型对于航空液压管路不同故障类型特征的学习能力,利用t/SNE降维算法进行液压管路特征可视化。结果表明:基于Bi/GRU航空故障诊断方法能达到99.60%的准确性,明显优于GRU等其他4种神经网络模型,Bi/GRU模型在含有噪声的液压管路数据上具备更出色的特征提取能力,可有效地提取出液压管路故障数据特征,从而实现了液压管路故障的智能化识别。
< 1
Rss订阅