首页>
根据【关键词:算法,航空积冰预测,多源数据融合】搜索到相关结果 2 条
-
多源数据融合的民航发动机修后性能预测
-
作者:
谭治学
钟诗胜
林琳
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
特征提取
航空发动机
多源数据融合
发动机维修决策
修后性能预测
-
描述:
针对民航发动机修后排气温度裕度预测过程中的多源异构数据融合问题,提出了卷积自编码器与极端梯度提升模型结合的方法。利用所提出的条件熵增长因子规整发动机修前多元传感器参数序列中的参数排序,采用卷积自编码器提取规整后的参数序列和维修工作范围的数据特征,并将其与发动机使用时间信息组成合成特征以训练极端梯度提升模型,从而预测发动机修后性能并评估各影响因素的重要程度。经发动机机队维修案例验证,所提方法预测精度高于单维参数序列预测方法,对发动机修后排气温度的平均相对预测误差不高于8. 3%。
-
多源数据融合的民航发动机修后性能预测
-
作者:
谭治学
钟诗胜
林琳
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
特征提取
航空发动机
多源数据融合
发动机维修决策
修后性能预测
-
描述:
针对民航发动机修后排气温度裕度预测过程中的多源异构数据融合问题,提出了卷积自编码器与极端梯度提升模型结合的方法。利用所提出的条件熵增长因子规整发动机修前多元传感器参数序列中的参数排序,采用卷积自编码器提取规整后的参数序列和维修工作范围的数据特征,并将其与发动机使用时间信息组成合成特征以训练极端梯度提升模型,从而预测发动机修后性能并评估各影响因素的重要程度。经发动机机队维修案例验证,所提方法预测精度高于单维参数序列预测方法,对发动机修后排气温度的平均相对预测误差不高于8. 3%。