关键词
基于视频序列的飞机乘客检测方法研究与应用
作者: 黄欣欣   来源: 中国科学院大学(中国科学院沈阳计算技术研究所) 年份: 2022 文献类型 : 学位论文 关键词: 行人检测   注意力机制   卷积神经网络   CSP算法  
描述: 基于视频序列的飞机乘客检测方法研究与应用
基于视频序列的飞机乘客检测方法研究与应用
作者: 黄欣欣   来源: 中国科学院大学(中国科学院沈阳计算技术研究所) 年份: 2022 文献类型 : 学位论文 关键词: 行人检测   注意力机制   卷积神经网络   CSP算法  
描述: 基于视频序列的飞机乘客检测方法研究与应用
基于注意力机制的航空图像旋转框目标检测
作者: 常洪彬   李文举   李文辉   来源: 吉林大学学报(理学版) 年份: 2022 文献类型 : 期刊 关键词: 航空图像   注意力机制   目标检测   深度学习  
描述: 针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像
基于注意力机制的航空图像旋转框目标检测
作者: 常洪彬   李文举   李文辉   来源: 吉林大学学报(理学版) 年份: 2022 文献类型 : 期刊 关键词: 航空图像   注意力机制   目标检测   深度学习  
描述: 针对在航空遥感图像目标检测中,航空图像在俯视图下呈任意方向排列,存在图像尺寸大、方向任意和背景复杂等问题,为能在复杂背景的航空图像中仍有较好的检测结果,提出一种基于注意力机制的旋转框航空图像
基于深度学习的航空遥感图像目标检测算法研究
作者: 常洪彬   来源: 吉林大学 年份: 2022 文献类型 : 学位论文 关键词: 遥感图像   注意力机制   深度学习   目标检测  
描述: 基于深度学习的航空遥感图像目标检测算法研究
基于深度学习的航空遥感图像目标检测算法研究
作者: 常洪彬   来源: 吉林大学 年份: 2022 文献类型 : 学位论文 关键词: 遥感图像   注意力机制   深度学习   目标检测  
描述: 基于深度学习的航空遥感图像目标检测算法研究
基于改进的SENet航空发动机振动预测
作者: 夏存江   詹于游   来源: 航空动力学报 年份: 2022 文献类型 : 期刊 关键词: 数据驱动   注意力机制   卷积神经网络   多参数融合   振动预测  
描述: 为实时监测和预警航空发动机振动状态,基于气路及振动参数,提出一种使用改进的SENet(squeeze-and-excitation network)模型,对航空发动机近未来的振动进行预测。该研究相比以往采用的实验室模拟数据和仿真数据,使用了真实的QAR(quick access recorder)数据并进行随机采样,以求更能表征发动机振动和工作参数之间的关系。同时,不仅使用其他振动信号进行验证,还在其他型号的发动机上进行测试。结果表明:针对航空发动机的振动进行预测是可行的,SENet模型可以有效并实时追踪振动的突变和波动。此外,该方法对于其他振动信号和不同类型的发动机具有一定的适用性。而且相较于以往采用的其他经典的深度模型,SENet模型在振动的预测中能得到更小的误差。实验证明,相较于以往只使用振动这个单参数进行预测,并行使用与振动相关的多参数融合进行研究更能提高预测的准确性。
基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测
作者: 张加劲   来源: 电子测量与仪器学报 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余寿命   双向长短期记忆网络  
描述: ,提出了一种基于注意力机制卷积神经网络和双向长短期网络融合模型。首先,采用卷积神经网络提取特征和双向长短期记忆网络获取特征中的长短期依赖关系;其次,使用注意力机制来突出特征中的重要部分,提高模型预测
基于优化混合模型的航空发动机剩余寿命预测方法
作者: 刘月峰   张小燕   郭威   边浩东   何滢婕   来源: 计算机应用 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余使用寿命   双向长短期记忆网络  
描述: 的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入
基于改进的SENet航空发动机振动预测
作者: 夏存江   詹于游   来源: 航空动力学报 年份: 2022 文献类型 : 期刊 关键词: 数据驱动   注意力机制   卷积神经网络   多参数融合   振动预测  
描述: 为实时监测和预警航空发动机振动状态,基于气路及振动参数,提出一种使用改进的SENet(squeeze-and-excitation network)模型,对航空发动机近未来的振动进行预测。该研究相比以往采用的实验室模拟数据和仿真数据,使用了真实的QAR(quick access recorder)数据并进行随机采样,以求更能表征发动机振动和工作参数之间的关系。同时,不仅使用其他振动信号进行验证,还在其他型号的发动机上进行测试。结果表明:针对航空发动机的振动进行预测是可行的,SENet模型可以有效并实时追踪振动的突变和波动。此外,该方法对于其他振动信号和不同类型的发动机具有一定的适用性。而且相较于以往采用的其他经典的深度模型,SENet模型在振动的预测中能得到更小的误差。实验证明,相较于以往只使用振动这个单参数进行预测,并行使用与振动相关的多参数融合进行研究更能提高预测的准确性。
< 1 2 ... 12 13 14
Rss订阅