首页>
根据【关键词:无参考模型,特征提取,卷积神经网络,特征融合,多模态数据,深度学习,网络结构,影像质量评价】搜索到相关结果 13 条
-
基于卷积神经网络的遥感图像飞机检测
-
作者:
张义德
胡长雨
胡春育
来源:
光电子技术
年份:
2017
文献类型 :
期刊
关键词:
遥感图像
卷积神经网络
微调
迁移学习
飞机检测
-
描述:
提出一种CNN的遥感图像飞机检测的方法。首先获得预训练好的CNN,然后通过参数迁移获得五层卷积层模型参数,接着利用遥感图像对第五层卷积层进行微调获得一个特征提取器。将特征提取器用于提取遥感图像训练集
-
基于民航陆空对话的语音识别关键技术研究
-
作者:
张志辉
来源:
中国民航大学
年份:
2017
文献类型 :
学位论文
关键词:
受限制玻尔兹曼机
声学模型
深度学习
民航陆空对话
语音识别
-
描述:
民航陆空对话语音指令的正确识别一直是确保航空器飞行安全的关键问题。近年来,由陆空对话问题导致的民航安全事故时有发生,给民航安全带来严重威胁。因此如何在现有条件下探索降低陆空对话风险的新方法,保障陆空对话指令的正确传输,成为一个有待解决的重要问题。近年来,语音识别技术一直是模式识别领域的研究热点并被广泛应用于诸多领域。本文通过对民航陆空对话的应用场景和特点进行分析,将语音识别技术应用到民航陆空对话领域,并结合深度神经网络(DNN)来解决民航陆空对话语音识别中的关键技术问题。为解决陆空对话的噪声问题,本文以真实的陆空对话为实验数据,对比了四种不同的降噪处理方法。实验结果表明,在该语料库下改进的谱减算法具有更好的降噪效果。在搭建语音识别系统的过程中,本文使用的语料库是以飞行员和管制员日常陆空对话的内容为蓝本,聘请管制专业人员录制的。使用该语料库分别搭建GMM-HMM单音素和三音素模型,并将三音素模型改进的结果作为DNN-HMM模型训练的标签,成功搭建DNN-HMM的声学模型。实验结果表明,DNN-HMM模型较GMM-HMM模型在基于民航陆空对话数据的音素识别中具有更强的建模能力。
-
航空电子设备故障预测特征参数提取方法研究
-
作者:
陈华坤
章卫国
史静平
何启志
占正勇
来源:
西北工业大学学报
年份:
2017
文献类型 :
期刊
关键词:
故障预测和健康管理
维数估计
支持向量机
特征提取
综合模块化航电系统
极大似法
DC变换器
降噪自编码神经网络
DC
-
描述:
故障特征提取是航空电子设备故障预测的关键技术,对于少量测试点的电子设备可以采用小波变换、傅里叶变换、经验模态分解等方法提取故障特征,但是由于航空电子设备属于大规模集成电路,测试点比较多,采用上述方法