关键词
基于温岭市二类调查的航空影像正射纠正技术研究
作者: 林辉   来源: 西南林业大学学报(自然科学) 年份: 2017 文献类型 : 期刊 关键词: 图像处理   数字摄影测量   UCX   正射纠正   LPS  
描述: 航空影像是二类调查的重要基础资料,但航空影像因地形等因素影响而产生畸变,使用前需要消除畸变进行正射纠正。本研究根据Ultra Cam X数字航摄相机的信息,在LPS工程中设置对应的参数,读入数据自带的外方位元素,直接对空三计算结果进行设定,对正射影像的定位精度以地形图为参照进行分析。结果表明:应用LPS就可以完成对数字航摄影像正射纠正,处理后的影像的匹配性较好,定位精度较高,效果较理想;通过检查点提取地形图和影像的对应坐标进行误差计算,平均总误差仅为1.249 m,可以满足温岭市森林资源二类调查的需要;该方法解决了航空影像数据量大、数量多、处理时间长、DEM使用等难题,对实际生产具有重要意义。
基于温岭市二类调查的航空影像正射纠正技术研究
作者: 林辉   来源: 西南林业大学学报(自然科学) 年份: 2019 文献类型 : 期刊 关键词: 图像处理   数字摄影测量   UCX   正射纠正   LPS  
描述: 航空影像是二类调查的重要基础资料,但航空影像因地形等因素影响而产生畸变,使用前需要消除畸变进行正射纠正。本研究根据Ultra Cam X数字航摄相机的信息,在LPS工程中设置对应的参数,读入数据自带的外方位元素,直接对空三计算结果进行设定,对正射影像的定位精度以地形图为参照进行分析。结果表明:应用LPS就可以完成对数字航摄影像正射纠正,处理后的影像的匹配性较好,定位精度较高,效果较理想;通过检查点提取地形图和影像的对应坐标进行误差计算,平均总误差仅为1.249 m,可以满足温岭市森林资源二类调查的需要;该方法解决了航空影像数据量大、数量多、处理时间长、DEM使用等难题,对实际生产具有重要意义。
航空摄影技术在黄河滩区管理中的应用实践——以砖窑场调查为例
作者: 李燕燕   许志辉   来源: 中国防汛抗旱 年份: 2022 文献类型 : 期刊 关键词: 滩区管理   ADS40   数字摄影测量   黄河   航空摄影  
描述: 采用数字航空摄影测量系统ADS40对黄河西霞院至陶城铺河段进行航空摄影,获取了空间分辨率为0.5 m的真彩色数字正射影像,通过影像解译及数据处理分析,获得该河段滩区砖窑场的位置分布、数量、砖窑场面积等信息,为黄河滩区管理提供了重要信息支持。
基于历史秃山航空影像获取高精度DEM关键技术的应用研究
作者: 丁小蔚   邓廷起   徐大展   江瑞   来源: 测绘与空间地理信息 年份: 2020 文献类型 : 期刊 关键词: 数字高程模型   滤波分类   秃山地表   历史航片   密集匹配  
描述: 基于历史秃山航空影像获取高精度DEM关键技术的应用研究
基于深度卷积神经网络的航空器检测与识别
作者: 俞汝劼   杨贞   熊惠霖   来源: 计算机应用 年份: 2017 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   目标检测识别   航空器检测  
描述: %的工作点上达到了79.2%的精确率,分类网络的实时性达到平均每张0.972 s,Top-1错误率为13%。所提框架在军用机场大尺寸卫星图像中航空器检测识别的具体应用问题上提出了新的解决思路,同时保证了实时性和算法精度。
基于深度学习的航空发动机剩余使用寿命预测研究
作者: 温海茹   来源: 内燃机与配件 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   深度学习   剩余使用寿命预测  
描述: 随着深度学习不断的发展,航空发动机成为近年来的研究热点,其寿命预测的研究也受到了研究学者的关注。本文主要介绍航空发动机的剩余使用寿命预测背景,数据获取过程及基于深度学习的剩余使用寿命的预测方法,以及深度学习在航空发动方面预测的难点和发展趋势。
基于深度学习的航空发动机剩余使用寿命预测研究
作者: 温海茹   来源: 内燃机与配件 年份: 2020 文献类型 : 期刊 关键词: 航空发动机   深度学习   剩余使用寿命预测  
描述: 随着深度学习不断的发展,航空发动机成为近年来的研究热点,其寿命预测的研究也受到了研究学者的关注。本文主要介绍航空发动机的剩余使用寿命预测背景,数据获取过程及基于深度学习的剩余使用寿命的预测方法,以及深度学习在航空发动方面预测的难点和发展趋势。
基于深度学习的航空器异常飞行状态识别
作者: 吴奇   储银雪   来源: 民用飞机设计与研究 年份: 2018 文献类型 : 期刊 关键词: 飞行状态识别   深度学习   高斯过程  
描述: 飞行设备快速存取记录仪(Quick Access Recorder,以下简称QAR)保留了原始航班各类重要飞行参数在内的航行信息,使研究分析航空器实时状况和保障飞行质量成为可能。针对QAR数据高维大样本的特点,在如今大数据背景下,除了传统机理建模分析航空器飞行状态外,采用深度学习的方式建立基于数据驱动的航空器飞行状态识别模型,理论与实用意义兼具。通过对真实QAR飞行数据的研究,开发了基于深度稀疏受限玻尔兹曼机的异常飞行状态识别程序。首先利用小波降噪技术对原始飞行数据进行预处理清洗,在一系列典型飞行参数上提取经典时域特征以及小波奇异熵等信息熵特征构成特征集。在此基础上,分别利用经典的线性主元分析技术和深度稀疏玻尔兹曼机对特征集进行有效降维,最后采用四折交叉验证方式,通过高斯过程分类器实现对飞行状态的辨识。实验结果显示,基于深度受限玻尔兹曼机-高斯过程分类的飞行状态识别具有较高分类准确性。
基于多分辨率遥感影像的飞机检测研究
作者: 侯宇青阳   全吉成   魏湧明   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 显著性提取   遥感影像   目标检测   深度学习  
描述: 从多分辨遥感图像特点、深度学习网络结构和飞机目标尺寸三个方面进行研究,明确了检测结果与图像中飞机目标像素数的定量关系,对影响图像中目标像素数的两个因素飞机实际尺寸和图像分辨率关系进行定量分析。在检测结论基础上设计了基于显著性检测算法的遥感图像前期处理算法,算法基于生成的显著性图像生成图像掩膜提取潜在目标区域图像块,进行多尺度放大,增加图像中目标的像素数,提升目标检测率。前期处理算法自适应的进行图像目标区域提取,解决了不同分辨率的大尺寸遥感影像中飞机检测率低的问题,通过与原始检测算法和其他图像处理方法对比验证了本文设计算法的有效性,在检测准确率和检测速度上均得到明显提升。
基于卷积神经网络的遥感图像飞机目标识别
作者: 晁安娜   刘坤   来源: 微型机与应用 年份: 2018 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   飞机识别   深度学习  
描述: 遥感图像的识别技术一直被广泛运用于民用和军事领域。针对采集到的遥感飞机图像存在大量干扰,如遮挡、噪声、视角变化等因素,提出一种改进的基于卷积神经网络的遥感图像目标识别算法。在复杂环境下,运用卷积神经网络对飞机目标进行识别,避免了在特征提取过程中信息的丢失,提高了识别率。实验结果证明了该算法在遥感图像飞机目标识别中的可行性,能克服尺度变化及目标姿态变化等因素的影响。同时提出的算法较传统CNN、BP神经网络和支持向量机(SVM)方法具有更好的识别效果,鲁棒性更强。
< 1 2 ... 7 8 9
Rss订阅