首页>
根据【关键词:异常点,随机森林,强影响点,燃油消耗】搜索到相关结果 4 条
-
基于随机森林和时间卷积网络的航空发动机故障预测
-
作者:
王秀娜
鲁守银
任飞
来源:
计算机时代
年份:
2022
文献类型 :
期刊
关键词:
航空发动机
时间卷积网络
随机森林
故障预测
-
描述:
航空发动机作为一种极其精密的设备,其内部传感器的运行状态决定了发动机能否稳定运行。因此,利用传感器的运行数据进行故障预测是维护发动机健康运行的关键。针对现阶段发动机故障预测精确度低的问题,提出了一种基于随机森林和时间卷积网络的混合模型。该模型利用随机森林算法进行重要性特征提取,然后添加滚动平均值和滚动标准差以增强数据特征,最后整合数据特征输入至时间卷积网络进行故障预测。采用C-MAPSS数据集进行验证,结果表明,该模型的故障预测性能相比于其他机器学习模型有较大幅度的提升。
-
基于相似性与GA-RF的航空发动机剩余寿命预测
-
作者:
赵洪利
魏凯
来源:
机床与液压
年份:
2022
文献类型 :
期刊
关键词:
健康指数
遗传算法
多模型相似性
随机森林
发动机寿命预测
-
描述:
针对单参数不能准确表征发动机性能退化过程,以及传统智能学习模型难以准确拟合发动机退化模型等问题,提出一种融合数据构建发动机健康指数(HI),并结合多模型相似性匹配与集成模型进行发动机剩余寿命预测的方法。利用层次聚类与轮廓系数筛选参数,并融合为发动机健康指数。采用遗传算法优化随机森林拟合发动机性能退化过程,并将多模型相似性匹配用于回归模型预测,优化模型的预测结果。选择某涡扇发动机仿真数据集(C-MPASS)验证所提方法的有效性。结果表明:该方法的RMSE为6.128、MAE为4.901,且融合健康指数和多模型相似匹配极大地提高了发动机剩余寿命预测精度。
-
航空发动机剩余使用寿命预测方法的融合与比较
-
作者:
黎明
宋海龙
苟江
来源:
智能计算机与应用
年份:
2022
文献类型 :
期刊
关键词:
信息熵
航空发动机
随机森林
剩余使用寿命
融合预测
-
描述:
航空发动机的性能变化将直接影响飞机的安全运行,对故障预测与健康管理(PHM)技术需求极为迫切,剩余使用寿命(RUL)预测是PHM的核心技术之一。本文采用多种预测方法对发动机剩余使用寿命进行预测,首先根据算法的功能和形式的类似性,把常用的回归类算法进行分类,接着对数据进行特征选择、异常值处理、特征衍生、数据归一化等处理,然后选取每个分类中比较经典的算法进行预测对比,最后采用基于精度的加权融合与基于信息熵融合方法,对RUL预测结果进行融合。实例分析结果表明:基于树的算法属于最佳类别,其中随机森林算法的单一预测效果最佳;融合预测方法的预测结果较单一预测方法均有一定的提升,拥有更高的预测精度。
-
航空发动机剩余使用寿命预测方法的融合与比较
-
作者:
黎明
宋海龙
苟江
来源:
智能计算机与应用
年份:
2022
文献类型 :
期刊
关键词:
信息熵
航空发动机
随机森林
剩余使用寿命
融合预测
-
描述:
航空发动机的性能变化将直接影响飞机的安全运行,对故障预测与健康管理(PHM)技术需求极为迫切,剩余使用寿命(RUL)预测是PHM的核心技术之一。本文采用多种预测方法对发动机剩余使用寿命进行预测,首先根据算法的功能和形式的类似性,把常用的回归类算法进行分类,接着对数据进行特征选择、异常值处理、特征衍生、数据归一化等处理,然后选取每个分类中比较经典的算法进行预测对比,最后采用基于精度的加权融合与基于信息熵融合方法,对RUL预测结果进行融合。实例分析结果表明:基于树的算法属于最佳类别,其中随机森林算法的单一预测效果最佳;融合预测方法的预测结果较单一预测方法均有一定的提升,拥有更高的预测精度。