按文献类别分组
关键词
基于深度学习的航空发动机剩余使用寿命预测方法研究
作者: 曹锦山.   来源: 重庆交通大学 年份: 2024 文献类型 : 学位论文 关键词: 航空发动机   Transformer   深度学习   剩余使用寿命   多头自注意力机制  
描述: 基于深度学习的航空发动机剩余使用寿命预测方法研究
基于DETR的高清航空图像目标检测算法研究
作者: 许伟伟.   来源: 电子科技大学 年份: 2024 文献类型 : 学位论文 关键词: DETR   Transformer   知识蒸馏   滑动窗口   航空目标检测  
描述: 基于DETR的高清航空图像目标检测算法研究
基于多尺度U-Net与Transformer特征融合的航空遥感图像飞机检测方法
作者: 张善文     邵彧     李萍     令伟锋   来源: 弹箭与制导学报 年份: 2024 文献类型 : 期刊 关键词: Transformer   Net与Transformer   航空遥感图像飞机检测   多尺度U   Net  
描述: 航空遥感图像(ARSI)飞机检测一直是一个重要且具有挑战性的课题。针对现有ARSI飞机检测方法(ARSIAD)检测目标的边缘模糊、小目标的检测精度低、没有充分利用ARSI的全局上下文信息等问题,提出一种基于多尺度U-Net与Transformer (MSU-Trans)特征融合的ARSIAD方法。通过多尺度卷积模块Inception提取ARSI中多样性目标的分类特征,通过Transformer增强模型的全局语义检测性能,通过特征融合模块整合高层和低层特征,得到航空目标图像完整的边缘和纹理特征。该模型结合多尺度U-Net较强的局部特征提取能力和Transformer较强的全局上下文依存关系提取能力,进而提高MSU-Trans的整体检测性能。在ARSI集上的试验表明,与U-Net、多尺度U-Net、注意力U-Nets相比,MSU-Trans具有较高的检测精度,精度超过95%,该方法为ARSIAD提供一定的技术支撑。
一种基于Transformer编码器与LSTM的飞机轨迹预测方法
作者: 李明阳     鲁之君     曹东晶     曹世翔   来源: 航天返回与遥感 年份: 2024 文献类型 : 期刊 关键词: Transformer   Encoder   轨迹预测   Transformer编码器   飞机目标   神经网络   LSTM模型  
描述: 为了解决飞机目标机动数据集缺失的问题,文章利用运动学建模生成了丰富的轨迹数据集,为网络训练提供了必要的数据支持。针对现阶段轨迹预测运动学模型建立困难及时序预测方法难以提取时空特征的问题,提出了一种结合Transformer编码器和长短期记忆网络(Long Short Term Memory,LSTM)的飞机目标轨迹预测方法,即Transformer-Encoder-LSTM模型。新模型可同时提供LSTM和Transformer编码器模块的补充历史信息和基于注意力的信息表示,提高了模型能力。通过与一些经典神经网络模型进行对比分析,发现在数据集上,新方法的平均位移误差减小到0.22,显著优于CNN-LSTMAttention模型的0.35。相比其他网络,该算法能够提取复杂轨迹中的隐藏特征,在面对飞机连续转弯、大机动转弯的复杂轨迹时,能够保证模型的鲁棒性,提升了对于复杂轨迹预测的准确性。
基于航空图像的目标检测算法Trans_YOLOv5
作者: 文青     伍欣     敖斌     李宽     殷建平   来源: 计算机技术与发展 年份: 2024 文献类型 : 期刊 关键词: 航空图像   Transformer   YOLOv5   圆形平滑标签   小目标检测   Swin  
描述: 能力,使网络模型更加关注于待检测的目标对象。在DOTAv2.0航空图像数据集上的实验结果验证了所提方法的有效性,检测结果达到60.98%mAP,与原YOLOv5算法检测结果相比提高10.85百分点,与官网公布的竞赛最佳结果相比提高2.01百分点。
改进的YOLOv5s遥感影像机场场面飞机小目标识别
作者: 张新君     赵春霖   来源: 电光与控制 年份: 2024 文献类型 : 期刊 关键词: 坐标注意力机制   遥感影像   Transformer   YOLOv5s   小目标检测   Swin  
描述: 小目标检测识别测试实验,改进后的YOLOv5s网络的mAP值为0.837 5,比YOLOv5s网络模型提高了0.022 5。实验结果表明,改进后的YOLOv5s网络模型对比YOLO系列网络和EfficientDet模型有效地提高了识别准确率、召回率以及mAP值,并且在训练时间上也比YOLOv5s减少了1/12。
< 1 2
Rss订阅