首页>
根据【关键词:剩余寿命预测】搜索到相关结果 3 条
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样、时间跨度长等特点,针对其数据类型多且体量大、数据冗余度较高、剩余寿命预测精度较低等问题,本文通过将生成对抗网络(Generative adversarial network, GAN)的生成能力与门控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上的相关性,然后将经过预训练的生成器附加到GRU之后得到整体模型.具体来说,本文采用预训练的GAN网络生成模块替代传统自编码器,解决了由自编码器参数过多引起的GRU模块训练不充分的问题,提升了时空相关特性的提取能力、提高了模型的泛化性能、提升了预测精度.本文利用CMAPSS涡扇发动机数据来验证模型效果,通过与不同机器学习方法进行对比,实验结果显示,该方法在均方根误差和指数型评价指标这两个评价指标上都有较高的预测精度.
-
基于特征注意力机制的GRU-GAN航空发动机剩余寿命预测
-
作者:
袁烨
黄虹
程骋
虞文武
丁汉
来源:
中国科学:技术科学
年份:
2022
文献类型 :
期刊
关键词:
注意力机制
生成对抗网络
特征提取
航空航天
剩余寿命预测
-
描述:
涡扇发动机作为航空航天领域的核心设备之一,其健康状况决定了航空器能否稳定可靠地运行.涡扇发动机的剩余寿命预测是航天器设备监测与维护的重要一环.然而涡扇发动机的监测过程具有工况复杂、监测数据多样、时间跨度长等特点,针对其数据类型多且体量大、数据冗余度较高、剩余寿命预测精度较低等问题,本文通过将生成对抗网络(Generative adversarial network, GAN)的生成能力与门控循环单元(Gate recurrent unit, GRU)的预测能力相结合,提出一种基于特征注意力机制的GAN和GRU融合模型.为了对时序关系进行建模,首先利用特征注意力机制和GRU分别提取空间和时间上的相关性,然后将经过预训练的生成器附加到GRU之后得到整体模型.具体来说,本文采用预训练的GAN网络生成模块替代传统自编码器,解决了由自编码器参数过多引起的GRU模块训练不充分的问题,提升了时空相关特性的提取能力、提高了模型的泛化性能、提升了预测精度.本文利用CMAPSS涡扇发动机数据来验证模型效果,通过与不同机器学习方法进行对比,实验结果显示,该方法在均方根误差和指数型评价指标这两个评价指标上都有较高的预测精度.
-
基于ConvJANET的航空发动机剩余寿命预测及其不确定性量化
-
作者:
苗永浩
李晨辉
石惠芳
林京
来源:
中国科学:技术科学
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
极大似然估计
不确定性量化
卷积循环神经网络
剩余寿命预测
-
描述:
航空发动机技术是衡量一个国家科技水平和工业实力的重要标志,健康状态监测和剩余使用寿命(remaining useful life, RUL)预测技术是航空发动机安全服役、经济运行的重要保障.针对航空发动机RUL预测精度较低、不确定性难以量化的问题,本文提出了一种数据驱动的航空发动机RUL区间预测方法.首先,在ConvJANET框架下构建新的卷积/卷积循环/全连接结构的深度学习模型,逐层提取航空发动机监测数据中的退化特征;其次,利用极大似然思想指导神经网络模型的优化求解,并基于损失函数形式变化的策略训练模型,实现对航空发动机RUL的高精度预测与不确定性量化.将所提出的方法用于分析航空发动机退化数据集,结果表明,对比传统基于蒙特卡洛的方法,本文提出的方法具有更高的RUL预测准确率和更好的置信区间预测性能.