首页>
根据【关键词:关键点检测,深度学习,双目立体视觉,缺陷检测】搜索到相关结果 4 条
-
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
-
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
-
描述:
一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFF-YOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷,采用9次裁剪、旋转和亮度增减的图像数据增强方法扩充样本数据,在此基础上进行了模型训练与测试。结果表明,针对完整涡轮叶片,建立的缺陷检测模型在0.5的置信度阈值下可获得96.7%的平均查准率和91.87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
-
基于深度学习的航空发动机涡轮叶片自动射线检测技术研究
-
作者:
王栋欢
肖洪
吴丁毅
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
涡轮叶片
射线图像
深度学习
射线检测
缺陷检测
-
描述:
一直以来,航空发动机涡轮叶片的射线检测依靠检验员人工评片。为避免经验差异、眼睛疲劳、标准理解等人为因素影响,有效改善传统射线检测费时费力、效率低下等问题,针对航空发动机涡轮叶片射线图像,基于YOLOv4模型提出了一种双主干特征融合的缺陷自动检测算法(DBFF-YOLOv4);通过设计包含所有特征映射的新型连接结构搭建缺陷检测颈部网络,建立了适用于涡轮叶片射线图像的缺陷自动检测模型;针对每个缺陷,采用9次裁剪、旋转和亮度增减的图像数据增强方法扩充样本数据,在此基础上进行了模型训练与测试。结果表明,针对完整涡轮叶片,建立的缺陷检测模型在0.5的置信度阈值下可获得96.7%的平均查准率和91.87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
-
基于堆栈自编码器和DeepAR的航空发动机剩余寿命预测
-
作者:
李浩
王卓健
李哲
陈煊
李园
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
寿命预测
深度学习
预测模型
数据融合
-
描述:
针对现有航空发动机剩余寿命预测大多基于单点预测模式,不能准确给出预测结果置信区间的问题,提出了一种基于堆栈自编码器结合DeepAR模型的概率分布预测模型。首先,堆栈自编码器通过无监督式深度学习对发动机监测数据进行特征提取,构建反映性能退化的健康指标(HI),基于双向长短期记忆(BiLSTM)网络构建DeepAR预测模型,将提取后的HI序列输入到DeepAR模型中,预测模型对HI序列与使用时间的隐含关系进行全局学习,并输出发动机剩余寿命的概率分布参数。利用CMPASS涡扇发动机退化数据集进行实验,验证所提方法的有效性。结果表明,本文所提预测方法同其他方法相比,对监测数据融合的效果更好,预测模型性能提高6.4%,实际剩余寿命基本在95%置信区间内。
-
基于SW/YOLO模型的航空发动机叶片损伤实时检测
-
作者:
何宇豪
曹学国
刘信良
蒋浩坤
王静秋
来源:
推进技术
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
实时检测
叶片损伤
深度学习
目标检测
孔探检测
-
描述:
孔探检测技术是航空发动机叶片损伤检测的主要手段,但目前依赖人工操作,耗时耗力。本文提出了一个孔探视频检测的SW/YOLO模型,该模型包括输入端、主干网络、颈部网络、头部网络4个模块。首先,在主干网络加入了空间通道注意力模块(Spatial Channel / Convolutional Block Attention Module,SC/CBAM),有效避免位置信息丢失,提高目标边界回归能力,相较于YOLOv5,其平均精度均值mAP@0.5提高了5.4%。其次,在颈部网络对特征金字塔网络(Feature Pyramid Network,FPN)进行了改进,通过融合低层特征,扩大了模型感受野,有利于较小损伤区域的检测,如烧蚀损伤,平均精度提高了8.1%。最后,通过与YOLOv5,Faster R/CNN,SSD模型的对比实验,结果表明SW/YOLO模型的平均精度均值分别提高了7%,6.2%,6.3%,检测速度满足实时检测需求,有利于提高航空发动机孔探检测的自动化和智能化水平。