按文献类别分组
关键词
光学遥感图像中的飞机目标检测技术研究综述
作者: 祝文韬   谢宝蓉   王琰   沈霁   朱浩文   来源: 计算机科学 年份: 2021 文献类型 : 期刊 关键词: 机器学习   光学遥感图像   深度学习   飞机目标检测   模板匹配  
描述: 光学遥感图像中的飞机目标检测技术已被广泛应用于城市规划、航空交通以及军事侦察领域。目前尽管已有大量研究,但仍然存在很多问题亟待解决。文中回顾了该技术研究现状,并从遥感图像目标检测思路出发,将飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
光学遥感图像中的飞机目标检测技术研究综述
作者: 祝文韬   谢宝蓉   王琰   沈霁   朱浩文   来源: 计算机科学 年份: 2021 文献类型 : 期刊 关键词: 机器学习   光学遥感图像   深度学习   飞机目标检测   模板匹配  
描述: 光学遥感图像中的飞机目标检测技术已被广泛应用于城市规划、航空交通以及军事侦察领域。目前尽管已有大量研究,但仍然存在很多问题亟待解决。文中回顾了该技术研究现状,并从遥感图像目标检测思路出发,将飞机目标检测方法总结为3类,对这3类检测方法的概念和研究情况分别进行了阐述,并在此基础上进行了比较分析,重点研究了深度学习方法在该领域的研究情况并讨论了样本和数据集问题,最后讨论了飞机目标检测的关键技术难点,并对该领域的未来发展趋势做了展望。
光学遥感图像停泊飞机目标检测方法研究
作者: 李翰夫   来源: 哈尔滨工业大学 年份: 2021 文献类型 : 学位论文 关键词: 机场停泊飞机检测   卷积神经网络   光学遥感图像   动态锚点学习法   特征金字塔  
描述: 光学遥感图像停泊飞机目标检测方法研究
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
基于可变形卷积神经网络的遥感图像飞机目标检测
作者: 李明阳   胡显   雷宏   来源: 国外电子测量技术 年份: 2021 文献类型 : 期刊 关键词: 卷积神经网络   遥感影像   可变形卷积   飞机检测  
描述: 遥感图像中的飞机检测在民用和军事应用中都是一个重要且富有挑战性的任务。针对现有目标检测算法在复杂场景中旋转不变性差的问题,提出了一种多尺度可变形卷积神经网络用以检测飞机目标。该方法通过将可变形卷积适当地嵌入到特征金字塔来构建可变形特征金字塔,使得金字塔可以自适应的调整卷积过程中的空间采样位置,在进行飞机检测时具有一定的旋转不变性,且在各种复杂场景中也更加可靠。同时,根据训练集中的目标尺寸设计锚点尺寸并引入焦点分类损失以有效地关注难分类样本。该方法在公共UCAS-AOD数据集获得了97.39%的平均精度与RetinaNet模型相比提高了1.59%,并优于R-FCN、YOLOV2等其他流行方法,证明了该方法的有效性和准确性。
基于YOLO算法的遥感图像飞机目标检测技术研究
作者: 张欣   来源: 中国科学院大学(中国科学院长春光学精密机械与物理研究所) 年份: 2021 文献类型 : 学位论文 关键词: 遥感图像   tiny   CSPNet   飞机检测   YOLOv4   激活函数  
描述: 基于YOLO算法的遥感图像飞机目标检测技术研究
一种基于级联神经网络的飞机检测方法
作者: 王晓林   苏松志   刘晓颖   蔡国榕   李绍滋   来源: 智能系统学报 年份: 2021 文献类型 : 期刊 关键词: 嵌入式设备   遥感图像   级联   卷积神经网络   两阶段   深度学习   飞机检测   由粗到细  
描述: 由于旋转角度多样性、极端的尺度差异的影响,遥感图像中的飞机检测目前仍存在挑战。为了解决旋转和尺度的问题,目前的策略是将现有的自然场景下的目标检测算法(如Faster R-CNN、SSD等)直接迁移到遥感图像中。这些算法的主干网络复杂,模型占用空间大,难以应用到低功耗和嵌入式设备中。为了在准确率不降低的情况下提高检测速度,本文提出了一个仅包含9层的卷积神经网络来解决飞机检测问题。该网络采用了由粗到细的策略,通过级联两个网络的方式减少计算开销。为了评估方法的有效性,我们建立了一个针对飞机检测的遥感数据集。实验结果表明,该方法超越了VGG16等复杂的主干网络,达到了接近主流检测方法的性能表现,同时显著降低了参数量并使检测速度提高了2倍以上。
< 1
Rss订阅