按文献类别分组
按栏目分组
关键词
基于深度学习航空发动机故障融合诊断
作者: 车畅畅   王华伟   倪晓梅   洪骥宇   来源: 北京航空航天大学学报 年份: 2018 文献类型 : 期刊 关键词: 航空发动机   故障诊断   深度学习   抗干扰能力   决策融合  
描述: 通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习航空发动机故障融合诊断模型。该模型通过分析发动机
基于改进差分时域特征和深度学习优化的航空发动机剩余寿命预测算法
作者: 高峰   曲建岭   袁涛   高峰娟   来源: 电子测量与仪器学报 年份: 2019 文献类型 : 期刊 关键词: 航空发动机   长短时记忆网络   寿命预测   深度学习   差分时域特征  
描述: 实现航空发动机剩余寿命的准确预测对于保证飞行安全和提高维修效率具有重要意义,但现有的预测算法往往只是浅层结构,且对各传感器参数之间的相互关系缺乏关联性考虑,限制了对发动机参数信息的深度挖掘。在
基于深度学习航空发动机故障融合诊断
作者: 车畅畅   王华伟   倪晓梅   洪骥宇   来源: 北京航空航天大学学报 年份: 2018 文献类型 : 期刊 关键词: 航空发动机   故障诊断   深度学习   抗干扰能力   决策融合  
描述: 通过对航空发动机故障诊断,能够正确判断各部件工作状态,快速确定维修方案,保证飞行安全。在结合深度信念网络和决策融合理论的基础上,提出了基于深度学习航空发动机故障融合诊断模型。该模型通过分析发动机
基于深度学习航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢     肖洪     吴丁毅   来源: 推进技术 年份: 2024 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: .87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
基于RDK-ELM的航空发动机控制系统故障诊断
作者: 陈虹潞   黄向华   来源: 航空发动机 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   极限学习机   控制系统   简约改进   故障诊断   深度学习  
描述: 为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
基于RDK-ELM的航空发动机控制系统故障诊断
作者: 陈虹潞   黄向华   来源: 航空发动机 年份: 2021 文献类型 : 期刊 关键词: 航空发动机   极限学习机   控制系统   简约改进   故障诊断   深度学习  
描述: 为保持较高诊断正确率,缩短训练时间,满足航空发动机故障诊断对于实时性和高诊断率的需求,提出1种对深度核极限学习机的简约改进方法。输入数据中随机选取部分数据作为支持向量,结合深度学习网络的多层结构
基于深度学习航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: .87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
基于深度学习航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: .87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
基于深度学习航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: .87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
基于深度学习航空发动机涡轮叶片自动射线检测技术研究
作者: 王栋欢   肖洪   吴丁毅   来源: 推进技术 年份: 2023 文献类型 : 期刊 关键词: 航空发动机   涡轮叶片   射线图像   深度学习   射线检测   缺陷检测  
描述: .87%的平均查全率,优于通用目标检测算法YOLOv4模型。9次缺陷裁剪、旋转和亮度增减的图像数据增强方法能够显著提高模型的缺陷检测精度(平均精度分别得到了59.19%和2.53%的提升)。该研究为涡轮叶片自动射线检测提供了一种新方法。
< 1 2 3 ... 7 8 9 ... 288 289 290
Rss订阅