首页>
根据【关键词:航空发动机,卷积神经网络,Informer,深度学习,剩余寿命预测】搜索到相关结果 1721 条
-
基于深度卷积神经网络的航空器检测与识别
-
作者:
俞汝劼
杨贞
熊惠霖
来源:
计算机应用
年份:
2017
文献类型 :
期刊
关键词:
卷积神经网络
深度学习
目标检测识别
航空器检测
-
描述:
针对军用机场大尺寸卫星图像中航空器检测识别的具体应用场景,建立了一套实时目标检测识别框架,将深度卷积神经网络应用到大尺寸图像中的航空器目标检测与识别任务中。首先,将目标检测的任务看成空间上独立
-
深度卷积网络在航空高光谱岩性识别中的应用——以塔木素铀矿床北部地区为例
-
作者:
张川
易敏
童勤龙
叶发旺
徐清俊
李泊凇
来源:
世界核地质科学
年份:
2024
文献类型 :
期刊
关键词:
卷积神经网络
深度学习
航空高光谱遥感
岩性识别
-
描述:
岩矿信息识别是高光谱遥感在地质勘探领域的主要应用方向。传统高光谱遥感方法尽管在矿物识别中取得了良好效果,但对于岩性识别存在瓶颈。深度学习是当前人工智能领域的研究热点,卷积神经网络是适用于图像识别
-
基于改进LSTM的航空发动机寿命预测方法研究
-
作者:
郭晓静
殷宇萱
贠玉晶
来源:
机床与液压
年份:
2022
文献类型 :
期刊
关键词:
长短期记忆网络
航空发动机
自动编码器
剩余寿命预测
-
描述:
,优化LSTM模型,改善航空发动机RUL预测效果。利用SDAE进行特征提取,构建健康因子(HI)曲线;同时考虑运行工况、故障模式和传感器3个因素,并分别训练其权重。利用LSTM模型进行发动机剩余寿命预测
-
基于Transformer模型的航空发动机剩余寿命预测方法研究
-
作者:
吴直遥
来源:
数字通信世界
年份:
2023
文献类型 :
期刊
关键词:
航空发动机
门控循环单元
剩余寿命预测
-
描述:
文章针对现有预测模型对航空发动机退化信息提取不充分的不足,构建了一种基于Transformer模型的预测模型,该模型在Transformer编码器模型基础上加入了门控循环单元,以增加模型对序列数据
-
基于ALSTM-MHA的航空发动机寿命预测
-
作者:
修瑞
丁建完
刘笑炎
高创
来源:
机床与液压
年份:
2024
文献类型 :
期刊
关键词:
航空发动机
注意力长短时记忆网络
多头自注意力机制
剩余寿命预测
-
描述:
基于ALSTM-MHA的航空发动机寿命预测
-
基于深度学习的离场航空器滑行时间预测(英文)
-
作者:
李楠
焦庆宇
朱新华
王少聪
来源:
Transactions of Nanjing University of Aeronautics and Astronautics
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
场面运行
滑行时间
深度学习
航空运输
-
描述:
起飞排序队列和给出准确的撤轮挡时间具有重要的作用。本文提出一种基于时间-空间-环境数据的深度学习模型(Spatio-temporal-environment deep learning model
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural
-
遥感图像飞机目标分类的卷积神经网络方法
-
作者:
周敏
史振威
丁火平
来源:
中国图象图形学报
年份:
2017
文献类型 :
期刊
关键词:
卷积神经网络
深度学习
可见光遥感
飞机
分类
-
描述:
飞机目标分类问题。方法在缺乏公开数据集的情况下,收集了真实可见光遥感图像中的8种飞机数据,按大致4∶1的比例分为训练集和测试集,并对训练集进行合理扩充。然后针对遥感图像与飞机分类的特殊性,结合深度学习