首页>
根据【关键词:终端区,能量高度,卷积神经网络(CNN),轨迹聚类,航空器,异常检测】搜索到相关结果 74 条
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2019
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于轨迹聚类的航空器轨迹模式挖掘研究
-
作者:
郭威
唐慧丰
来源:
计算机应用研究
年份:
2021
文献类型 :
期刊
关键词:
扫描线算法
轨迹模式
MDL原则
线段密度
轨迹聚类
-
描述:
轨迹模式是航空器在某段时间或某个区域内相对稳定的飞行模式,对理解和判断目标在一段时间或一定区域内的行为有着重要的意义。针对目标轨迹的特点,在基于点密度聚类算法的基础上,设计并实现了一种基于线段密度
-
面向低视角场面监视的移动目标速度测量
-
作者:
张天慈
丁萌
钱小燕
左洪福
来源:
北京航空航天大学学报
年份:
2019
文献类型 :
期刊
关键词:
机场场面监视
低视角
轨迹聚类
速度测量
标定
-
描述:
为构建有效的机场场面视觉监视系统,提出一种基于特征点持续跟踪与分析的移动目标速度测量方法。首先利用场面几何特征对摄像机进行标定,然后基于光流场对图像运动区域的特征点进行持续跟踪,在此基础上通过特征点轨迹聚类区分不同移动目标,最后根据特征点高度与运动距离完成速度测量。该方法能够利用机场场面摄像机获取的低视角单目视频图像,对移动目标的运动速度进行准确测量。基于广州白云机场的场面运行视频进行了仿真分析,验证了该方法在低视角速度测量方面的可行性与优势。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
通用航空训练飞行发动机数据异常检测初探
-
作者:
王翔
来源:
内燃机与配件
年份:
2022
文献类型 :
期刊
关键词:
深度学习
训练飞行
异常检测
-
描述:
大型运输机发动机的健康管理研究较为广泛,相对于运输航空,针对通用航空领域以训练飞行为主的小型教练机发动机的异常检测技术还不够成熟。训练飞行具有飞行模式固定,起降频次较高,信息数据结构简单的特点,更适合引入深度学习对其进行建模分析。本文归纳了当前主流的几种深度异常检测模型,从原理、计算复杂度和优缺点三个角度进行分析。为通用航空训练飞行的教练机发动机的异常检测研究提供可行的研究思路。
-
基于HDAD的异构航空数据异常检测的研究
-
作者:
陈宏宇
时宏伟
来源:
计算机仿真
年份:
2020
文献类型 :
期刊
关键词:
异构时间序列
局部趋势
航空数据
异常检测
-
描述:
飞行数据记录仪(FDR)在每一次飞行中都记录了大量的航空观测数据,航空数据属于多元时间序列,具有高维和异构的特点。为了检测出其中的异常飞行记录,提出了一种异构航空数据的异常检测模型HDAD(Anomaly Detection for Heterogeneous Data)。HDAD模型分别使用基于局部趋势的向量表示法SMV(Slope-Mean Vector)和基于变化点的方法分别对连续特征的时间序列和离散特征的时间序列进行压缩表示。经过验证试验表明SMV表示法与SAX,PCA相比,能够更加精确的表示时间序列的信息。通过仿真,使用HDAD模型对合成航空数据集与真实航空数据集进行异常检测,实验结果表明,所提出的HDAD模型能够检测出FDR数据中可能存在的潜在异常,有助于航空公司对FDR数据进行进一步的分析。
-
基于HDAD的异构航空数据异常检测的研究
-
作者:
陈宏宇
时宏伟
来源:
计算机仿真
年份:
2020
文献类型 :
期刊
关键词:
异构时间序列
局部趋势
航空数据
异常检测
-
描述:
飞行数据记录仪(FDR)在每一次飞行中都记录了大量的航空观测数据,航空数据属于多元时间序列,具有高维和异构的特点。为了检测出其中的异常飞行记录,提出了一种异构航空数据的异常检测模型HDAD(Anomaly Detection for Heterogeneous Data)。HDAD模型分别使用基于局部趋势的向量表示法SMV(Slope-Mean Vector)和基于变化点的方法分别对连续特征的时间序列和离散特征的时间序列进行压缩表示。经过验证试验表明SMV表示法与SAX,PCA相比,能够更加精确的表示时间序列的信息。通过仿真,使用HDAD模型对合成航空数据集与真实航空数据集进行异常检测,实验结果表明,所提出的HDAD模型能够检测出FDR数据中可能存在的潜在异常,有助于航空公司对FDR数据进行进一步的分析。
-
基于多维特征终端区航空器轨迹聚类研究
-
作者:
李楠
靳辉辉
强懿耕
来源:
航空计算技术
年份:
2019
文献类型 :
期刊
关键词:
多维相似矩阵
终端区
多维特征
谱聚类
-
描述:
针对航空器轨迹聚类多是利用位置特征信息,没有充分考虑目标的速度、航向等多维特征信息,在发掘轨迹聚类中存在局限性,提出基于多维特征的航空轨迹聚类方法。通过散点相似矩阵确定多维特征,利用多维特征构建轨迹