按文献类别分组
按栏目分组
关键词
基于卷积神经网络的遥感图像飞机目标识别
作者: 晁安娜   刘坤   来源: 微型机与应用 年份: 2018 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   飞机识别   深度学习  
描述: 遥感图像的识别技术一直被广泛运用于民用和军事领域。针对采集到的遥感飞机图像存在大量干扰,如遮挡、噪声、视角变化等因素,提出一种改进的基于卷积神经网络的遥感图像目标识别算法。在复杂环境下,运用
航空轮胎有限元分析
作者: 刘坤   苏彤   王典   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   模糊不变   目标识别  
描述: 由于采集、运动以及聚焦等导致的目标模糊是目标识别率偏低的一个主要问题,因此本文提出一种基于模糊不变卷积神经网络模型BICNN(Blur-Invariant Convolutional Neural
卷积神经网络及其在航空视觉任务中的应用展望
作者: 漆昇翔   裘旭益   张伟   来源: 航空电子技术 年份: 2019 文献类型 : 期刊 关键词: 卷积神经网络   计算机视觉   深度学习   航空航天  
描述:卷积神经网络的基本理论出发,介绍了几种经典卷积网络结构,并结合当前卷积神经网络在计算机视觉领域的应用现状,重点探讨了它在未来航空视觉相关任务系统中的应用前景,以及实施这些技术必须解决的若干问题,为未来航空装备智能化水平的进一步提升提供参考。
基于卷积神经网络的遥感图像飞机目标识别
作者: 晁安娜   刘坤   来源: 微型机与应用 年份: 2018 文献类型 : 期刊 关键词: 遥感图像   卷积神经网络   飞机识别   深度学习  
描述: 遥感图像的识别技术一直被广泛运用于民用和军事领域。针对采集到的遥感飞机图像存在大量干扰,如遮挡、噪声、视角变化等因素,提出一种改进的基于卷积神经网络的遥感图像目标识别算法。在复杂环境下,运用
航空轮胎有限元分析
作者: 刘坤   苏彤   王典   来源: 激光与光电子学进展 年份: 2018 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   模糊不变   目标识别  
描述: 由于采集、运动以及聚焦等导致的目标模糊是目标识别率偏低的一个主要问题,因此本文提出一种基于模糊不变卷积神经网络模型BICNN(Blur-Invariant Convolutional Neural
基于深度卷积神经网络的航空器检测与识别
作者: 俞汝劼   杨贞   熊惠霖   来源: 计算机应用 年份: 2017 文献类型 : 期刊 关键词: 卷积神经网络   深度学习   目标检测识别   航空器检测  
描述: 突破,而基于卷积神经网络的航空器目标检测识别算法充分利用了计算硬件的优势,大大缩短了任务耗时。在符合应用场景的自采数据集上进行测试,所提算法目标检测实时性达到平均每张5.765 s,在召回率65.1
基于改进的SENet航空发动机振动预测
作者: 夏存江   詹于游   来源: 航空动力学报 年份: 2022 文献类型 : 期刊 关键词: 数据驱动   注意力机制   卷积神经网络   多参数融合   振动预测  
描述: 为实时监测和预警航空发动机振动状态,基于气路及振动参数,提出一种使用改进的SENet(squeeze-and-excitation network)模型,对航空发动机近未来的振动进行预测。该研究相比以往采用的实验室模拟数据和仿真数据,使用了真实的QAR(quick access recorder)数据并进行随机采样,以求更能表征发动机振动和工作参数之间的关系。同时,不仅使用其他振动信号进行验证,还在其他型号的发动机上进行测试。结果表明:针对航空发动机的振动进行预测是可行的,SENet模型可以有效并实时追踪振动的突变和波动。此外,该方法对于其他振动信号和不同类型的发动机具有一定的适用性。而且相较于以往采用的其他经典的深度模型,SENet模型在振动的预测中能得到更小的误差。实验证明,相较于以往只使用振动这个单参数进行预测,并行使用与振动相关的多参数融合进行研究更能提高预测的准确性。
基于注意力机制和CNN-BiLSTM模型的航空发动机剩余寿命预测
作者: 张加劲   来源: 电子测量与仪器学报 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余寿命   双向长短期记忆网络  
描述: ,提出了一种基于注意力机制卷积神经网络和双向长短期网络融合模型。首先,采用卷积神经网络提取特征和双向长短期记忆网络获取特征中的长短期依赖关系;其次,使用注意力机制来突出特征中的重要部分,提高模型预测
基于优化混合模型的航空发动机剩余寿命预测方法
作者: 刘月峰   张小燕   郭威   边浩东   何滢婕   来源: 计算机应用 年份: 2022 文献类型 : 期刊 关键词: 注意力机制   航空发动机   卷积神经网络   剩余使用寿命   双向长短期记忆网络  
描述: 的路径提取特征:1)将原始数据的均值和趋势系数输入至全连接网络;2)将原始数据输入双向长短期记忆(Bi-LSTM)网络,并采用注意力机制处理得到的特征;3)使用注意力机制处理原始数据,并将加权特征输入
基于改进的SENet航空发动机振动预测
作者: 夏存江   詹于游   来源: 航空动力学报 年份: 2022 文献类型 : 期刊 关键词: 数据驱动   注意力机制   卷积神经网络   多参数融合   振动预测  
描述: 为实时监测和预警航空发动机振动状态,基于气路及振动参数,提出一种使用改进的SENet(squeeze-and-excitation network)模型,对航空发动机近未来的振动进行预测。该研究相比以往采用的实验室模拟数据和仿真数据,使用了真实的QAR(quick access recorder)数据并进行随机采样,以求更能表征发动机振动和工作参数之间的关系。同时,不仅使用其他振动信号进行验证,还在其他型号的发动机上进行测试。结果表明:针对航空发动机的振动进行预测是可行的,SENet模型可以有效并实时追踪振动的突变和波动。此外,该方法对于其他振动信号和不同类型的发动机具有一定的适用性。而且相较于以往采用的其他经典的深度模型,SENet模型在振动的预测中能得到更小的误差。实验证明,相较于以往只使用振动这个单参数进行预测,并行使用与振动相关的多参数融合进行研究更能提高预测的准确性。
< 1 2 3 ... 37 38 39
Rss订阅