描述:
We are researching a new display device that allows the public to experience augmented reality without wearable devices. In this paper, we implement an image processing system that improves the dynamically changing image quality deterioration, which is a problem unique to optical systems that project images on the real space, and specify the necessary system requirements from the results of verification of the effect. We quantify the characteristics of blur for each of the three primary colors defined as digital image data, and implement image processing that applies filter correction to the input image data during aerial imaging. Since the effect on image quality depends on what kind of imaging optical path is formed, we designed the device structure assuming that it will be applied to signage products, and built an experimental environment that can analyze the aerial image that the user actually sees. The image subjected to the correction process follows an optical path that forms an image in the air, and the user visually recognizes the image with emphasized edges. We compared the results of the actual aerial image and the simulation results, and clarified the system requirements for realizing an image processing system with higher correction accuracy.
描述:
We are researching a new display device that allows the public to experience augmented reality without wearable devices. In this paper, we implement an image processing system that improves the dynamically changing image quality deterioration, which is a problem unique to optical systems that project images on the real space, and specify the necessary system requirements from the results of verification of the effect. We quantify the characteristics of blur for each of the three primary colors defined as digital image data, and implement image processing that applies filter correction to the input image data during aerial imaging. Since the effect on image quality depends on what kind of imaging optical path is formed, we designed the device structure assuming that it will be applied to signage products, and built an experimental environment that can analyze the aerial image that the user actually sees. The image subjected to the correction process follows an optical path that forms an image in the air, and the user visually recognizes the image with emphasized edges. We compared the results of the actual aerial image and the simulation results, and clarified the system requirements for realizing an image processing system with higher correction accuracy.