首页>
根据【作者:陈凯强,高鑫,闫梦龙,张跃,孙显,】搜索到相关结果 11 条
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于编解码网络的航空影像像素级建筑物提取
-
作者:
陈凯强
高鑫
闫梦龙
张跃
孙显
来源:
遥感学报
年份:
2021
文献类型 :
期刊
关键词:
卷积神经网络
建筑物提取
深度学习
遥感
航空影像
-
描述:
建筑物提取在城市规划等土地利用分析中发挥着重要作用。用于提取建筑物的传统方法通常基于手工特征和分类器,导致精度较低。本文基于编解码结构的卷积神经网络CNN (Convolutional Neural Networks),自主学习多级的和具有区分度的特征来更好地辨识建筑物和背景,实现航空影像中的像素级建筑物提取。该网络由编码子网络和解码子网络两部分组成,编码子网络对输入图像进行空间分辨率压缩,完成特征提取;解码子网络从特征中提升空间分辨率,完成像素级的建筑物提取。此外,本文使用视野增强FoVE (Field-of-View Enhancement)方法减轻边缘现象(切片边缘附近的建筑物提取精度通常低于中心区域附近的精度)的影响,并分别在两个建筑物提取标准数据集上的实验表明,编解码卷积神经网络能有效实现像素级建筑物提取,FoVE能有效提高建筑物提取准确率;通过改变预测时切片大小和重叠度,分析其对建筑物提取结果的影响,揭示了FoVE的饱和性。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2017
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
基于卷积神经网络的高分辨率SAR图像飞机目标检测方法
-
作者:
王思雨
高鑫
孙皓
郑歆慰
孙显
来源:
雷达学报
年份:
2019
文献类型 :
期刊
关键词:
合成孔径雷达(SAR)
数据增强
视觉显著性
飞机检测
卷积神经网络(CNN)
-
描述:
传统的合成孔径雷达(Synthetic Aperture Radar,SAR)图像飞机检测方法一般利用像素对比度信息进行图像分割,从而提取待定目标。然而这些方法只考虑了像素亮度信息而忽视了目标的结构特征,进而导致目标的不精确定位和大量虚警的产生。基于上述问题,该文构建了一个全新的SAR图像飞机目标检测算法框架。首先,针对大场景SAR图像应用需求,提出了改进的显著性预检测方法,从而实现SAR图像候选飞机目标多尺度快速粗定位;然后,设计并调优了含4个权重层的卷积神经网络(Convolutional Neural Network,CNN),实现对候选目标的精确检测和鉴别;最后,因为SAR数据量有限、易导致过拟合,提出4种适用于SAR图像的数据增强方法,具体包括平移、斑点加噪、对比度增强和小角度旋转。实验证实该飞机检测算法在高分辨率Terra SAR-X数据集上效果显著,与传统的SAR飞机检测方法相比,该方法检测效率更高,泛化能力更强。
-
陆航飞行员胜任特征调查问卷的初步编制
-
作者:
陈凯强
来源:
人民军医
年份:
2017
文献类型 :
期刊
关键词:
陆航飞行员
初步编制
胜任特征调查问卷
-
描述:
目的:初步编制陆航飞行员胜任特征调查问卷。方法:采用归类汇总后形成的44个条目为初始问卷,对陆航某训练基地直升机飞行员124例进行调查,分析其胜任特征因子和问卷内部一致性信度等。结果:成就力条目分值与总分的皮尔逊积差相关系数0.4,为保留条目。探索性因子分析结果显示,陆航飞行员胜任特征由交往能力、认知能力、观察能力、精神素养、工作能力和身体能力等6个因子构成。陆航飞行员胜任特征调查问卷的内部一致性系数均>0.80(P<0.05),总问卷内部一致性信度系数为0.936(P<0.05)。结论:该问卷具有较好的信度,可初步用于陆航飞行员胜任特征调查。
-
陆航飞行员胜任特征重要性评价模型
-
作者:
陈凯强
班定军
来源:
华南国防医学杂志
年份:
2017
文献类型 :
期刊
关键词:
评价模型
陆航飞行员
胜任特征
-
描述:
。结果 1敬业奉献等9项指标的赋值上陆航飞行员显著高于普通军官,9项指标被确定为评价陆航飞行员最重要的指标;2根据22项指标建立了陆航飞行员重要性评价模型,共三级指标,第一级指标包括敬业奉献等9项胜任
-
飞机结构件智能制造关键技术研究
-
作者:
高鑫
龚清洪
孙超
来源:
制造技术与机床
年份:
2018
文献类型 :
期刊
关键词:
生产线
智能制造
飞机结构件
-
描述:
随着技术的发展,具有可持续发展特点的智能制造模式已经成为制造业未来的发展方向。研究飞机结构件智能制造技术对于提高飞机结构件加工水平具有重要意义。提出了飞机复杂结构件智能制造生产线架构,研究了飞机大型复杂结构件智能制造生产线关键技术,为智能制造技术在航空结构件生产中的应用提供了重要参考。
-
航空企业视角的中国航空客运网络组织模式
-
作者:
陆璐
魏冶
庞瑞秋
高鑫
来源:
地理科学
年份:
2019
文献类型 :
期刊
关键词:
航空企业竞争
网络组织模式
异配性
同配性
航空网络
-
描述:
基于37个中国航空企业的航班大数据,选取对外联系度、异(同)配性系数、层次分析、优势生态位分析等方法对中国航空客运网络组织模式进行分析。研究发现:①中国航空网络发育整体趋于成熟,已形成明显的层次性和核心-边缘结构,航空企业的航空网络均蕴藏位序-规模规律,依据其机场节点、航线和航班数量可划分为6个层级;②依据企业视角与网络规模、层次性与同配性/异配性等指标的综合度量,中国航空企业的网络组织模式可划分为核心培育阶段、核心竞争阶段、过渡阶段与稳定增长阶段4种类型;③航空企业的航空网络包括核心-边缘同配性网络和核心-边缘异配性网络,企业间竞争焦点主要表现为"核心"的竞争;④结合航空客运网络组织模式的判定,当前中国航空网络存在两条收敛规律:层次性收敛与同配性/异配性收敛;⑤实力强、规模大的航空企业在全国通航城市的比例分布均匀,具有较高生态位;实力弱、规模小的航空企业在全国通航城市的分布具有区域性且比例不均,生态位较低。为优化航空网络结构、避免企业恶性竞争,中国不同等级的航空企业一方面需结合自身发展阶段不断优化网络组织模式,寻求与企业等级相适应的生态优势位;另一方面要加强合作,避免航线饱和问题,提高整个航空网络的韧性和运营效率。