按文献类别分组
按栏目分组
按年份分组
按来源分组
关键词
依流程相似度对目标群组做群集分析:以航空发动机维修厂之自修工件为例
作者: 曾固钰   来源: 国立中央大学 年份: 2016 文献类型 : 学位论文 关键词: 流程  流程再造  
描述: 群集分析(Clustering Analysis)為資料探勘(Data Mining)技術中所廣泛被人們所應用的技術之一,目前已被大量應用在商業顧客分析、醫學、病理學、自然科學等領域,近年來更大量用在基因資料分析或影像分析等領域。目前人們使用群集分析所探討的資料種類絕大部分為類別性資料(Qualitative data)、數量型資料(Quantitative data)或兩種資料混和型資料。較少有人討論到是否可以用群集分析的理論來探討流程型資料(Process Data or Flow Data)。本研究旨在建立能夠分析具有流程型資料之物件其相似度模型,發現將模型建立在群集分析之匯聚型階層式群集分析法(Agglomerative Hierarchical Method)之上,並使用Average Linkage計算兩物件之距離,可得到較佳之分群(Grouping)效果。但流程順序之相似度(similarity)判定需視不同研究標的給予不同的相似度得分,使用者須端看研究環境選擇較適合之判定準則。本研究所挑選之個案資料為某發動機修護工廠執行GE CF6-80C2 Engine 翻修(Overhaul)工作時,維修過程中所產生之自修工件,希望能得到自修工件之間彼此在維修流程上之相似程度,以利管理階層於做工作站安排工作時或是其他管理決策之依據,例如修理站人員專長規劃、新維修能量開發標的甚至是未來維修站新購機台之考量。最後得到的結果發現此分群模型可將發動機翻修時所產生的205項自修工件在經過流程相似度分群之後可得到8個較明顯之工件群組。在經過與現場工作人員討論後,可給予各個工件群組依維修流程上之相似意義,可見集群分析概念亦可替流程性類型資料做相似度分群,達到物件分群效果。
< 1
Rss订阅