按文献类别分组
按年份分组
关键词
基于自适应粒子群优化的不平衡航空客户数据质量优化
作者: 姚雨虹   杨小兵   陈欣   来源: 厦门大学学报(自然科学版) 年份: 2020 文献类型 : 期刊 关键词: 自适应粒子群   卷积神经网络   忠诚度预测   随机森林  
描述: 航空业的竞争愈发激烈,高效且准确的客户忠诚度预测模型有利于提高企业竞争力。针对航空数据集存在严重分类不平衡、特征维度多等问题,提出了客户忠诚度预测模型。该模型基于自适应粒子群优化算法(APSO)得到多数类优化样本子集,使用卷积神经网络(CNN)提取得到的平衡数据集特征,将自动得到的特征向量作为随机森林算法(RF)的输入,构建客户忠诚度预测模型。实验结果表明,本文方法预测性能优于其他预测模型,可以更好地预测客户忠诚度情况。
< 1
Rss订阅