关键词
航空液压系统流量智能预测方法研究
作者: 刘涌泉   李巍   牛伟   罗旭东   来源: 科学技术与工程 年份: 2023 文献类型 : 期刊 关键词: 航空液压系统   数据预测   决策树   数据挖掘   梯度提升回归树(GBRT)  
描述: 液压系统是飞机重要机载系统之一,它为飞机输出能源驱动,其性能、稳定性和可靠性直接影响飞机的安全性。流量是衡量液压系统稳定性的重要判据,实时监测液压系统管路流量可对系统特性分析、故障诊断提供有力的支持。但由于流量传感器造成的流阻对系统特性有显著影响,因此在航空液压系统中未广泛使用。针对传感器带来的流阻问题,深入分析了与流量相关的参数,提出基于梯度提升回归树的航空液压系统流量预测模型,通过关键参数预测液压系统的流量。试验结果表明:梯度提升回归树(gradient boosting regression tree, GBRT)模型相比最小二乘线性回归模型、决策树回归模型、极端梯度提升树XGBoost模型,在预测准确度、训练时间、测试时间等指标中取得了较好的表现,验证了所提方法的有效性。
基于智能算法优化BP的航空器滑出时间预测
作者: 朱晓波   贾鑫磊   王楚皓   来源: 科学技术与工程 年份: 2023 文献类型 : 期刊 关键词: 机场场面运行效率   粒子群优化   麻雀搜索算法   BP神经网络   滑出时间  
描述: 滑出时间是评估大型机场场面运行效率的主要性能指标,科学准确地预测离港航空器的滑出时间,对于提升场面运行效率至关重要。首先,分析了航空器滑出时间影响因素及相关性,构建了基于反向传播(back propagation, BP)神经网络的航空器滑出时间预测模型。针对BP神经网络存在对初始权值和阈值敏感、准确性和稳定性欠佳等缺点,分别采用粒子群优化(particle swarm optimization, PSO)算法和麻雀搜索算法(sparrow search algorithm, SSA)获取BP神经网络的最优权值和阈值,并采用中国中南某枢纽机场2周的实际运行数据对智能算法优化后的预测模型进行了验证。结果表明:滑出时间与半小时平均滑出时间、起飞队列长度、同时段滑行的离港航空器数量均有强相关性,与同时段滑入的进港航空器数量中度相关,与滑行距离和经过冲突热点区域个数相关性较弱;考虑强相关和中度相关影响因素的4元组合预测模型的预测结果最佳;智能优化算法通过获取神经网络的局部最优权重和阈值,可有效地提升航空器滑出时间预测结果的精度,但运算过程耗时也更长;基于PSO优化后的BP神经网络预测结果较优化前的平均绝对百分比误差(mean absolute percentage error, MAPE)提升了1.13%,平均绝对误差(mean absolute error, MAE)减少了4.48 s,均方根误差(root mean squared error, RMSE)减少了4.68 s;基于SSA优化后的BP神经网络预测结果较优化前的MAPE提升了3.05%,MAE减少了16.55 s, RMSE减少了14.31 s。
< 1
Rss订阅